
 

 

저작자표시-비영리-변경금지 2.0 대한민국 

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게 

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.  

다음과 같은 조건을 따라야 합니다: 

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.  

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.  

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다. 

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.  

Disclaimer  

  

  

저작자표시. 귀하는 원저작자를 표시하여야 합니다. 

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다. 

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다. 

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/


Design of robust speed controller for marine diesel engine

2009 12



.本 論文 工學碩士 學位論文 認准

2009 12 18



- i -

Abstract ····················································································································ⅲ

Nomenclature ···········································································································ⅴ

1 ·································································································· 1

1.1 ····································································································· 1

1.2 ····································································································· 1

1.3 ····································································································· 2

2 ······················································································ 4

2.1 ······································································· 4

2.1.1 ·································································· 4

2.1.2 ···················································································· 5

2.2 ········································································· 7

2.2.1 - ······················································ 7

2.2.2 ······························································································ 9

2.2.3 ······················································································ 9

2.3 ∞ ································································································ 10

2.3.1 ∞ ····································································· 11

2.3.2 ∞ ····················································································· 12

2.4 ∞ - ············································································· 15

2.4.1 ·················································· 15

2.4.2 ∞ - ······································································ 19

2.5 - ··························································································· 20

2.5.1 - : D-K ········································································ 21

2.5.2 - : -K ········································································ 22



- ii -

3 ······················································································ 23

3.1 ······························································································· 23

3.2 ··························································· 29

3.3 ························································· 29

3.3.1 ······························································ 30

3.3.2 ························································································ 30

3.3.3 ···························································································· 30

3.4 ················································································· 32

4 ······················································ 35

4.1 ∞ ·········································· 35

4.1.1 ∞ ································································· 35

4.1.2 ∞ ················································· 36

4.2 ∞ - ····································· 42

4.2.1 ∞ - ························································ 42

4.2.2 ∞ - ········································ 44

4.3  ································································ 49

4.3.1  ··················································································· 49

4.3.2  ··································································· 51

4.3.3  ····················································· 56

4.4 ∞ , ∞ - ,  ································ 58

5 ·································································································· 64

····························································································································· 65



- iii -

Design of robust speed controller for marine diesel engine

Soon-kyu Hwang

Department of Mechatronics Engineering

Graduate School of Korea Maritime University

Abstract

Robustness has been an important issue in control-systems design ever

since 1769 when James Watt developed his flyball governor. A successfully

designed control system should be always able to maintain stability and

performance level in spite of uncertainties in system dynamics and/or in the

working environment to a certain degree.

And the energy saving is one of the most important factors for profit in

marine transportation. In order to reduce the fuel oil consumption the ship's

propulsion efficiency must be increased as much as possible. This situation

led the conventional mechanical-hydraulic governors for engine speed control

to replace digital speed controllers which adopted the PID control or the

optimal control algorithm. But these control algorithms have not enough

robustness to suppress the engine's variation of the time delay and the

parameter perturbation.

In this study the author compares robust stability and performance of the

designed controllers with sub-optimal ∞, ∞ loop-shaping, -synthesis and
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 - iteration algorithm. And the validity of these three controllers is

investigated through the response of computer simulation with Matlab.

Finally, the author designs the digital governor for engine speed control

through the fore-mentioned robust control theory and applies it to the closed

system via computer program. The result of the engine speed control shows

the good disturbance rejection and reference signal tracking. In particular, 

controller is the most excellent in the nominal performance, robust stability

and performance. But it has great difficulty in using in the industry because

of controller's high order. In order to apply it to the industry, it needs to

reduce its order.
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�omenclature

 : System matrix

   : Inverse of system matrix

 : Norm-bounded subsets of 

  : Polynomial of denominator

 : Real n × n matrix

  : Transpose of 

   : Linear fractional transformation of  and 

   : Lower linear fractional transformation

    : Upper linear fractional transformation

 : Transfer function matrix of nominal model

 : Transfer function matrix of the engine's combustion subsystem

 : Nominal engine plant

 : Transfer function matrix of

 : Transfer function matrix of the engine's rotation subsystem

 : The shaped system with the weighting functions  and 

 : Transfer function matrix of plant with the perturbation

 : Hamiltonian matrix

 : Unit matrix

 : Controller

  : Gain of the engine's combustion subsystem

  : Suboptimal ∞ controller

 mu : -synthesis controller

  : Loop shaping design procedure controller

  : Gain of the engine's rotation subsystem
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  : Reduced order controller

   : Interconnected transfer function matrix

  : Polynomial of numerator

  : General plant

 : Real n × n matrix

 and  : Field of real and complex numbers

 : Sensitivity function

 : Time constant of combustion subsystem

 : Time delay of fuel injection system

 : Time constant of the engine's rotation subsystem

 : Control signal of the fuel pump rack

 : Real n × n matrix

  : Weighting functions

 : Pre-compensator

 : Post-compensator

  : Uncertainty set

 : Physical parameter

 : Nominal value

 : Disturbance vector

det(A) : Determinant of A

diag : Diagonal matrix

 : Error signal vector

 : Measurement noise vector

 : Perturbation

 : Reference input vector

 : Control signal vector

w : Exogenous input signal vector
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 : State vector

 : Output signal vector

 : Output signal vector

 : Constant

 : Perturbation block

 : Fictitious performance uncertainty block

 : Uncertainty parameter

 : Stability margin

 : Constant

 : Eigenvalue

 : Structured singular value

(A) : The largest singular value of A

  : Rotational angular velocity


 : Transfer function of combustion time delay

∈ : Belong to

⊂ : Subset

 : Defined as

∀ : All of

∥∙∥ : 2-norm

∥∙∥∞ : ∞-norm

∥∙∥ : Hankel norm
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4L80MC . Table 1

, Table 2

.

Table 1: Specification of the modeled engine

Bore × Stroke 800 × 2592[mm]

Pmean 18.4[kgf /cm
2
]

BHP(M.C.R) 15,880[bhp] (83 rpm)

Moment of inertia 27,130.27[kgf ‧ m ‧ s2
]

S.F.O.C 125[g /bhp /h]

* M.C.R: Maximum continuous rating

S.F.O.C: Specific fuel oil consumption

Table 2: Specific value of the modeled engine

rpm

parameter
50 55 60 65 70

 35.71 39.24 42.85 46.38 50.05

 79.90 96.59 115.05 134.90 156.83

 24.97 33.20 43.14 54.80 68.61

 73.62 80.59 87.97 95.25 102.86

.
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Figure 25: Singular values of the closed-loop system

Figure 26: Sensitivity function
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Figure 27: Robust stability analysis
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Figure 29: Sensitivity function of perturbed system

Figure 30: Performance of perturbed system
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Figure 31: Frequency response of perturbed system
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Figure 33: Transient response of perturbed systems
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Figure 34: Frequency response of the precompensator
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Figure 35: Frequency response of the plant and shaped plant
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Figure 36: Sensitivity function
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Figure 37: Robust stability of closed-loop system
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Figure 39: Sensitivity function of perturbed system

Figure 40: Performance of perturbed system
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Figure 41: Frequency response of perturbed system
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Figure 42: Transient response of nominal system
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Figure 43: Transient response of perturbed systems
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Figure 44: Diagram for the case of the robust performance analysis with uncertainties
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Figure 45:  values and -scaling at sixth iteration
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Figure 46: Sensitivity function
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Figure 47: Robust stability
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Figure 49: Sensitivity function of perturbed system

Figure 50: Performance of perturbed system
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Figure 51: Frequency response of perturbed system
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Figure 52: Transient response of nominal system
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Figure 53: Transient response of perturbed systems
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Figure 54: Transient response for reduced-order controller
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Figure 55: Transient response of perturbed system
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Figure 56: Frequency response of three controllers

Figure 57: Frequency response of closed-loop systems
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Figure 58: Comparisons of nominal performance for three controllers
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Figure 59: Comparison of robust stability for three controllers

Figure 60: Comparison of robust performance for three controllers
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Figure 61: Performance degradation for three controllers
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Table 3: Index of robust stability and performance for three controllers

Controller
Index of nominal

performance

Index of robust

stability

Index of robust

performance

∞ controller :  1.0012 0.69604 1.5797

∞ LSDP

controller : 
1.1294 0.6504 1.6958

 controller :  0.97355 0.57433 1.5969
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