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Design of Optimal Trajectories and Tracking

Controller for Unmanned Underwater Vehicles

Mai Ba Loc

Department of Mechanical Engineering

Graduate School of Korea Maritime University

Abstract

This dissertation presents the design of optimal trajectories and tracking
controller for the translational motion of an unmanned underwater vehicle (UUV).
The dissertation proposes optimal trajectories which include time-optimal
trajectories and energy-saving ones. These trajectories are given in a closed form of
explicit functions derived from solving analytically the nonlinear second order
differential equation representing the translational motion of the vehicle. The
dissertation also proposes a trajectory-tracking controller using sliding mode
method. This controller can force the vehicle to track the designed trajectories very
well, even with uncertainties. Its robustness can be guaranteed if bounds of the

uncertainties are known.

The dissertation also presents the calculation of required thrust range of
thruster(s) based on constraints of the optimal trajectories and robustness of the
controller. Accordingly, thruster capacity can be chosen if related vehicle

parameters and requirements of performance are identified.

The dissertation will focus on the case of depth motion control of the vehicle as

an illustration for the proposed solutions. Similar ones could be made for other

vi



directions of translational motion of the vehicle. The effectiveness of the proposed

designs will be demonstrated via simulation results.

KEY WORDS: UUV, Optimal trajectory, Tracking controller, Depth control, ,
Thrust design, Sliding Mode Control, Uncertainty
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Nomenclature

m vehicle mass

p roll rate (body-fixed reference frame)

pitch rate (body-fixed reference frame)

r yaw rate (body-fixed reference frame)

u surge velocity (body-fixed reference frame)

v sway velocity (body-fixed reference frame)

w heave velocity (body-fixed reference frame)

Xg the body-fixed coordinate of the vehicle center of gravity on the surge axis
Vg the body-fixed coordinate of the vehicle center of gravity on the sway axis
Zg the body-fixed coordinate of the vehicle center of gravity on the heave axis
X the x-component inertial coordinate of the vehicle

y the y-component inertial coordinate of the vehicle

Z the z-component inertial coordinate of the vehicle

roll angle (inertial reference frame)
pitch angle (inertial reference frame)

yaw angle (inertial reference frame)

vehicle weight

Oog*stb%

vehicle buoyancy

pTM  positive thrust margin

nTM negative thrust margin
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Chapter 1

Introduction

1.1 Background

In recent years, a large number of studies on unmanned underwater vehicles
(UUVs) have been published. However, studies on the optimal control, especially
in topics of time-optimal and energy-efficient maneuvers, of such vehicles have

been rare. They are still underdeveloped (Chyba et al., 2008a).

The most basic position controller is the regulator, whose input is a constant of
desired position. This controller usually causes sudden changes and unexpected
overshoots. The more advanced one is the trajectory-tracking controller, whose
input is a time-varying position reference signal (trajectory). If the trajectory is well
designed (smoothly and feasibly), this controller will perform well, making gradual
changes and almost no overshoots. A simple trajectory can be the output of a low-
pass filter, whose input is a constant of desired position, or a polynomial which
smoothly connects the departure point with the destination (Fraga et al., 2003).
Such trajectories can be easily designed. However, they may not have time
optimality or energy efficiency. Recently, Chyba et al. presented a numerical
method for designing the time-optimal trajectory (Chyba et al., 2008b) or the
weighted consumption and time-optimal trajectory (Chyba et al., 2008a). The
numerical method needs a nonlinear optimization solver, which requires
discretizing state and control variables of a nonlinear optimization model before
using an approximate calculation algorithm to find the time or/and consumption
optimal trajectories. This method is quite complex and has some weaknesses. The
calculation algorithm can only be implemented with a powerful processor and its
results take a long time to converge. Because of an offline method, it restricts the
controller’s automatic ability. The designed optimal trajectories and control forces
are given in the form of sequences of discrete values the storage of which requires

a large memory. In addition, Chyba et al. (2008a&b) have not been interested in



developing a suitable controller which can help the vehicle track the desired
trajectory. They presented open-loop controllers, whose inputs are the sequences of
predetermined discrete values of control forces. Such controllers cannot ensure a
good trajectory-tracking performance for the vehicle, as expected, because of the
influence of uncertainties such as dynamic perturbations, and disturbances which

always exist in the case of UUVs.

So, new approaches in finding the optimal trajectories, together with a robust

tracking controller, are expected.

1.2 Motivation

The time-optimal or energy-efficient trajectories are essential to UUV
maneuver. Such trajectories were given by Chyba et al. (2008a&b). However, they
are the results of a numerical solver which is difficult to use. An analytical solution

for this issue is expected, and is a new challenge.

1.3 Contributions

In this dissertation, an analytical method, not a numerical method, is used to
find the optimal trajectories. They are explicit functions given in closed-form
expressions, whose formats are unchanged. The use of such functions increases the
controller’s automatic ability. The proposed controller is a trajectory-tracking
controller, so it offers time optimality or energy efficiency as long as its references
(inputs) are the time-optimal or energy-efficient trajectories, respectively; even

with uncertainties.

The dissertation also presents the calculation of required thrust range of
thruster(s) based on constraints of the optimal trajectories and robustness of the
controller. This thrust range is reference for engineers to decide thruster capacity

for choosing thruster(s).



1.4 Methodology
In the dissertation, the analytical method is used to solve the nonlinear second
order differential equation representing the translational motion for finding the

optimal trajectories.

For a robust controller, the sliding mode method is used to design the

trajectory-tracking controller.

1.5 Dynamics assumptions
The dynamic equations of UUV are used in the design process of the optimal

trajectories. These dynamic equations are given with the following assumptions:

— The vehicle is deeply submerged in a homogeneous, unbounded fluid

(the vehicle is located far from free surface — no surface effects).
— The effects of the vehicle passing through its own wake are ignored.

— The vehicle propeller is a source of constant thrust and its torque is small,

thus ignored.



Chapter 2

Mathematical Model of Unmanned Underwater Vehicle

2.1 Body-fixed and inertial coordinate systems

A coordinate system fixed with the body of vehicle, called body-fixed
coordinate system, with its origin set at the center of vehicle buoyancy, is used to
describe dynamics of UUV. The motion of the body-fixed frame of reference is

described relative to an inertial or earth-fixed reference frame as shown in Fig. 2.1.

Inertial or Earth-Fixed
Coordinate System

Body-Fixed Coordinate wt
System

Surge: u, X

Sway: v, ¥ Roll: p, K

Pitch: g, M Heave: w, Z

Yaw: r N

Figure 2.1 Body-fixed and inertial coordinate systems

2.2 Full equations of motion
2.2.1 Vehicle kinematics
As shown in Fig. 2.1, (x, y, z) and (¢ 6 ) are the position and orientation of
the vehicle with respect to (wrt) the inertial reference frame respectively. The
following coordinate transform relates translational velocities between body-fixed

and inertial coordinates:



X u
y|=40D|v (D
Z w

where n=(0,6,y)

cosycos@ —sinycos@+cosysinfsing sin sin @+ cosy sin @ cos @
Ji(n)=|sinycos@ cosycosp+sinysinfsing —cosy sin@+siny sinfcos@P

—sin @ cos @sin ¢ cos@cos @

The second coordinate transform relates rotational velocities between body-

fixed and inertial coordinates:

¢ p
0 |=J,()| q (2)
/4 r

where

1 singtan@ cos@tané
Jo(m)=|0 cos ¢ —sin ¢
0 sing/cos@ cos¢@/cosb

Note that J»(7) is not defined for pitch angle 8= £90°. This is not a problem as
the vehicle motion does not ordinarily approach this singularity. If we were in a
situation where it became necessary to model the vehicle motion through extreme
pitch angles, we could resort to an alternate kinematic representation such as

quaternions.

2.2.2 Vehicle rigid-body dynamics
Given that the origin of the body-fixed coordinate system is located at the
center of buoyancy as noted in Section 2.1, the following represents the full
equations of motion for a six degree-of-freedom rigid body in body-fixed

coordinates (Fossen, 1994):



m[b't—vr+wq—xg(q2 +r2)+yg(pq—if)+zg(pr+Q)] = ZX

m[\}—wp+ur—yg(r2 +p2)+zg(qr—p)+xg(qp+i")] =ZY

ml—ug+vp—2,(p° +4>)+x,(rp— @)+ y, (rg+ p)l =Y. Z

Lop+U, —1,)qr =i+ pg)l, +(r* =g +(pr—q)l
+mly, (W—ug+vp)—z,(V—wp+ur)] =Y K (3)

Lyq+ (o =1 )p=(p+qr)ly +(p* =) +(gp=P)l,,

+mlz, (th—vr+wq) —x, (W—ug+vp)]= ZM

I+, =1 )pg— G+, +(q° = pP)y +(rq— p)I .

+m[x, (V—wp +ur) =y, (—vr+wq)] =ZN

— u, v, w: surge, sway, heave velocities respectively

- pgr roll, pitch, yaw rates (positive sense as in (Fig. 2.1)
— X, Y Z: external forces

— K, M, N: external moments

— X, Yo 2o center of gravity wrt origin at center of buoyancy

— Iy moments of inertia wrt origin at center of buoyancy (a and b

symbolize x or y or z)

- m: vehicle mass



ZX =Xpgs + Xy lul+ X0+ X, wg+X,.qq+X,,vr
+ X+ X 0

DY =Yg + Vv IvI+Y,r L r 1 4Y0+ Vi + Y, ur + Y, wp
+Y,,pq+ Y, uv+Y,,,,

D Z=Zys+Zg W WI+Z 9 g\ +Zo+ ZyG + Z,uq
+ vavp + errp +Z,,uw+ mep “4)
D K=Kys+K,,plpl+K,p+K,,,
2 M=Mpys+M dlql
+M,uqg+M, vp+M, rp+M, uw+M

prop
ZN:NHS +NV|V|V|V|+Nr|r|r|r|+N‘;\>+N};f'+Nurl/lr

+Ny,wp+N,,pqg+N,u+N,,,

with the formulas of hydrostatic forces and moments:

Xpys =—(W —B)sin@

Yyg = (W —=B)cos@sin ¢

Zys =W —=B)cosfcosp

Kpg ==y W cos@cosp—z,W cos@sin g (5)
M g =-z,Wsin6—x,W cos fcos ¢

Nys =—x,W cos@sing—y,Wsin &
here,

Xprop, Yprop, Zprop:  the thrusts of the thrusters projected on the

corresponding axes
—  Kprop, Mprop, Nprop = the steering moments made by the thrusters
- W, B: weight and buoyancy of the vehicle respectively

— The remaining factors are other nonlinear maneuvering coefficients of

forces and moments (Fossen, 1994).



Equations (1)-(5) give out a mathematical model of UUV which provide a
platform for vehicle control system development, and an alternative to the typical

trial-and-error method of vehicle control system field tuning.

2.3 Depth plane model

In this dissertation, we just focus on the design and tracking control of optimal
trajectories for the depth motion of the vehicle as an illustration for the proposed
solutions, so we only need to consider the body-relative heave velocity w, and the
earth-relative vehicle depth z. We will set all other translational and rotational
velocities to zero, and assume that the roll, pitch and yaw angles of the vehicle
always are kept at zero for simplicity. As a result, the mathematical model of the

depth motion (depth plane model) of the vehicle is as follows:

(m=ZyWo=Zywlwl=W=B)+Z,.,, (6)

=W (7)

Substituting Eq. (7) into (6), we have:

(=23~ Zyy2 2 1= W =B)+ Z (8)

Setting a=m-2,>0, b=-Z,,>0, N=B-W >0 (net buoyancy), and

wini

U=2,., > Eq. (8) becomes:

az+bz1z1+N=u )

Eq. (9) can be used as a reference model for generating the optimal depth
trajectories if the values of the parameters a, b, N, u are given. In the next chapter,
the optimal depth trajectories are designed by solving analytically Eq. (9), so are

given in closed-form expressions.



Chapter 3

Optimal Trajectories

3.1 Time-optimal trajectories

For time-optimal trajectories (TOTs), our approach stems from the fact that
the minimum time to destination can be attained when the thruster(s) of the vehicle
always operates at maximum thrust levels during the maneuver. Therefore, the
depth differential equation of the vehicle given in Eq. (9) with appropriate constant

thrust forces will be solved to find the time-optimal trajectories.

We will design TOTs for the vehicle when it moves from the beginning depth
Z0 at time 1ty (zo = 0, o = 0) to the ending depth z, at time 7, (z. > 0). At both these
depth levels, the vehicle is at rest, meaning that its velocity is zero (Z(t)) = vo = 0,
z(t,) = v, = 0). Depending on the value of the ending depth z,, there are two plans
for the course of the vehicle velocity z. Plan I: if z, is large, z will increase from
zero to the critical value v,, (acceleration period), and it will stay at this value for a
certain period of time (constant velocity period), and then decrease to zero right at
the ending time ¢, (deceleration period). Plan II: if z, is small, Z will increase from
zero to a certain value, not greater than v,,, (acceleration period), and then decrease
to zero right at the ending time 7, (deceleration period). Plan II does not have the
constant velocity period. In both plans mentioned above, the vehicle velocity is

always non-negative. So, we can rewrite Eq. (9) as follows:

ai+bi”+N=u (10)
Setting net force f=u—N (11)

Eq (10) becomes:
ai+bi*=f (12)

From Eq. (11), if we know the value of the net buoyancy N and the range of the



thrust force u, we can calculate the range of the net force f.

Assuming f; < f < f,, with f; <0, f, >0, TOTs can be obtained by solving
Eq. (12) either with f = f, (corresponding to u = u,) for the constant velocity and
acceleration periods or with f = f; (corresponding to u = u;) for the deceleration

period. Here, u; and u, are the designed constant thrust forces.

3.1.1 TOTs with the constant velocity and acceleration periods

Eq. (12) is rewritten as follows:
@iy +bil = f, (13)
The constraints for these periods are:

a, b >0 and z4,%Z5 >0 (C1)

At the beginning time 7y, the initial conditions are:
- Zd(IZIQZO) =vy=0 (Kl)
" zy(t=19=0) =20=0 (K2)

here, t denotes the variable of time.

Setting  z; =h(t)>0 (14)
we have:
} dh(t)
_ 15
24 o (15)

Substituting Egs. (14) and (15) into Eq. (13) yields:

dh 5
a—+bh” = 16
dt 5 (16)

Eq. (16) can be rewritten:

10



dh 2
a—-=f,—b.h 17
0 /2 (17

o If f,—b.h*#0

From Eq. (17), we have:

CZLZICZI
fy—bh
or, 4 A _ 4 (18)
b hz_&
b

Finding the antiderivative of each function at both sides of Eq. (18), we obtain:

—a _2Jh1b | .
b h, ey pin| (1%

* From Eq. (13), we have:

b3 =f,—di; < f,,duetoa>0and Z; >0 as stated at the constraints C1

or, h=z2, < Jf,/b (20)

Adding ./ f, /b to both sides of the inequality (20), we have:

h+\f1b < 2Jf51b

__Wh!b 1)
h+f, b

or, 1

From (19) & (21), we have:

—a 2 fr b )
2\/m.ln(h_h/m IJ—t+c1 (22)

11



* From Eq. (22) and the condition (K1), we have:

_ -a 2Jfhlb )
cl—zm.ln(v(ﬁ_m lj to (23)

Eq. (22) can be rewritten as follows:

2 [ 1b 3 _ =2\b.f,
ln(—h‘i‘m IJ——a (t+c))

. 2Jf1b
or, 2y =h= —2./b.f2(t+c)_\/f2/b (24)
1
a

1+e

From Eq. (24), we can easily deduce the expression of Z; as follows:

d . 4 _27 ”b'fz(t+cl)
.. Z e
7= d": fa > (25)
t a ( -2.b.f, (+4ep) )
1 g
In addition, Eq. (24) can be written as follows:
2b-fo (t+c)) J
e ¢ .dt
=2/ - .
dz, folb mecl) fo/b.dt
I1+e ¢
2Vb-f2 (t+c))
d|1+e ¢
a
or, dz, =—. — —Jfr/bdt 26
I+e ¢

Finding the antiderivative of each function at both sides of Eq. (26), we obtain:

2Jb.f,

——=(t+¢)
ZdZ%.ln(1+e a

)=folbt+c, 27)

12



* From Eq. (27) and the condition (K2), we have:

2Jb.f,

(ty+cy)
cz=zo—%.ln(l+e a 0

Y+ fo I bt (28)

o If f,—b.h* =0, we have:

p =12
b
or, z; =h=./f;/b=constant (29)

Zg =~/ fo /b given in Eq. (29) is accepted if the initial time is denoted by f;

instead of #y, t; # to, and the following initial conditions are satisfied:
= Zt=t) = vi=, f% = v, (critical velocity) (K3)

= zdt=t) =2 (K4)

In fact, this is a particular case in which the velocity has reached the critical

value. At this time, the net force is balanced with the drag force b.z’ﬁ, the vehicle

velocity no longer changes and stays at the critical velocity+/f, /b . So, the vehicle

acceleration is zero and the vehicle depth increases linearly with time.
From Eq. (29) we easily obtain:

Z2g =~ fa/bit+cs 3D

* From Eq. (31) and the condition (K4), we have:

a=z1—+f2 /by (32)

13



So, the solutions for z,;, z;,and Z; satisfying Eq. (13) are as follows:

(D

(ID)

2Jb.f,

NPI2 (146
2 (®) :%.ln(l+e a

NWEIb

Zq1(1) =
2.1, (t+er)
l1+e @
4f _27Vb'f2(t+cl)
. e ¢
Zq () === v 3
( b (t+cl))
l+e @

0 =—o .ln( N Tb —1j—r
20b.f,  \vo+~[falb 0
a 2.\b.f, (to+¢))
CZZZO—Z.ln(l'i'e a )+ﬁf2/bt0

Zg2 () =Vt +c3
Zga(B) =V
Z42 (=0
3=z -4

3.1.2 TOTs with the deceleration period

Eq. (12) is similarly rewritten as follows:

. .2
azg +bZd = fl

The constraints for this period are:

a,b>0; fi<0 and z520; Z; <0

(27)

(24)

(25)

(23)

(28)

31
(29)
(30)
(32)

(33)

(C2)

Assuming #, is the initial time of this period, the corresponding initial

conditions are:

u Zd(Z=I2) =v,>0

" z(t=h) =2

14

(K5)

(K6)



Setting z; = h(t) 20 (14)

we have:

. _dh()

15
24 ” (15)

Substituting Egs. (14) and (15) into Eq. (33) yields:

dh 2
a—+b.h" = 34
P h (34)

Eq. (34) can be rewritten:

a@:fl—b.h2<0 (35)
dt

(fi —b.h?* <0 due to f1<0and b > 0 as stated at the constraints C2)

From Eq. (35), we have:

dh

a———=dt
fi—bh

or, 2 A _ 4 (36)
b 2, ~h
b

Finding the antiderivative of each function at both sides of Eq. (36), we obtain:

V=b.fi

.arctan( =t+cy (37)

h
W)

* From Eq. (37) and the condition (K5), we have:

Cy = —— .arctan (V—zj —t (38)
J-b.fi N-filb
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Eq. (37) can be written as follows:

_—J=b.fi

a

arctan(

h
i)
or, z;,=h= Flfl tan(_‘V_b'fl .(t+c4)) (39)

a

From Eq. (39), we can easily deduce the expression of Z; as follows:

. _dzg  fi 1
=—d _J1 (40)
N it a cosz(_\/_b'fl.(t+c4))
a

In addition, Eq. (39) can be written as follows:

dzy =-f, /btan(_—\'_b'fl.(t+c4)j.dt
a

d[cos(_ “_b'fl.(t+c4)ﬂ
a
cos(_\/_b'fl.(t+c4))
a

or, dZd :;. (41)

Finding the antiderivative of each function at both sides of Eq. (41), we obtain:

Cos(_—“_b'fl.(t+c4))
a

7y = %.m +os (42)

* From Eq. (42) and the condition (K6), we have:

cos(_—“_b'fl.(tz +c4))‘ (43)
a

a
cs=27,——.In
5 2 b

So, the solutions for z,;, z;,and Z,; satisfying Eq. (33) are as follows:
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243(0) :%.m Cos(_—\'_b'fl.(t+c4)j +¢5 (42)

a
243(t) = _Tfl tan (_—V_b’fl .(t+c4)J (39)

a

y fi 1
(IID) | Z45(t) =—. —_— (40)

a cosz("b'fl.(t+c4)j
a
__4 2|

q—m.arctan( —fl/bj ) (38)
Cs :zz—%.ln cos(_—“_b'fl.(tz +c4)J‘ (43)

a

3.1.3 The profiles of the TOTs
For Plan I:
TOTs of Plan I (Plan I trajectories) have shapes as shown in Fig. 3.1. They are
used when the ending deph z, has a large value (long range) satisfying the

inequality below.

*
2 > %,

where Z: = Zf + AZ; (44)

zf : the distance travelled during the period from the initial time 7y to the time

#;" when the vehicle velocity just reaches the critical value i (or v,,) as shown in
Fig. 3.1c and 3.1d. During this period, the net force f is always kept at the high
level f>, and the vehicle acceleration decreases from the maximum value f>/a to zero

as shown in Fig. 3.1b.

Az; : the distance travelled during the period from the time when the vehicle

velocity starts decreasing from the critical value v, to the ending time z, when it
just falls to zero as shown in Fig. 3.1c and 3.1d. During this period, the net force f

is always kept at the low level f;, and the vehicle acceleration increases from the

peak negative value (f; —b.v,%l) /a to a smaller negative value of f;/a as shown in

17



Fig. 3.1b.
Plan I trajectories can be divided into four segments in a sequence as follows:

— Segment I (the time is from #y to #;): The net force f is always at the high level
f>. The acceleration decreases from the maximum value f»/a to zero. The velocity
increases from v to vl*. And, the depth increases from z to zl*. In this segment, the
expressions of the TOTs are given as in system (I), including Eqgs. (23-25, 27, 28).
The initial and final velocity and depth states are (v, zo) and (vy, z1), respectively.

* * *
Note: 1y =11 ,vi=vi (0rvn), 21=21 .

— Segment II (the time from ¢, to ,): The net force f is still at the high level f.
The acceleration is zero. The velocity is always at v,. And, the depth increases
from z; to z. The corresponding expressions of the TOTs are given as in system
(II), including Eqgs. (29-32). The initial and final velocity and depth states are (v,

z1) and (v, 72), respectively. Note: v = vy = vy,.

— Segment III (the time from £, to #3): The net force f is changed to the low level
/1 (the thruster(s) is assumed to be able to instantly change its thrust force from u,
to u; corresponding to the change of the net force from f, to fi, respectively). The

acceleration instantly changes from zero (at the final point of segment II) to the
peak negative value (fj —b.v,i)/ a (at the initial point of segment III), and then,
increases to a smaller negative value of f;/a as shown in Fig. 3.1b. The velocity

decreases from v, to zero. And, the depth increases from z, to z,. The
corresponding expressions of the TOTs are given as in system (III), including Egs.
(38-40, 42, 43). The initial and final velocity and depth states are (v», z2) and (vs,

73), respectively. Note: t3 =1, v3=v, =0, 23=2,, 3— 22 = AZ3*.

— Segment IV (the time from #; onwards): The net force f is zero. The
acceleration instantly changes to zero and stays at this value. The velocity is also

zero to keep the depth constant.
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Fig. 3.1 Time-optimal trajectories of Plan I
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The initial and final times, velocities, and depths of each segment are given or

calculated as follows:
" 1o, V0, 20, Ve, Ze are given (o, Vo, 20, Ve = 0)
ES ES *
222 =7 +AZ3

The expression of z1 is given in Eq. (51) and the one of Az given in Eq. (66).

N SPR P4

To determine the value of the time #;” we should rely on the expression of the
velocity Z;; shown in Eq. (24). As mentioned previously, the velocity reaches

the critical value vl* at tl* So, we have:
t )= (45)
From Eqs (24) & (45), we have:

NAHTE

-2b.f, (l‘l*+cl)
a

1+e

*
or, tl =

—a JHTb—v,
1 ~ 46
2o “(Wmﬁ] : o

If the value of vl* is known, tl* can be determined by Eq. (46). Unfortunately,

however, it is impossible get the value of #;" when v, in Eq. (46) is replaced by

v,, =~/ f> /b as expected. Indeed, this equation shows that #," tends to infinity

as vl* goes to vy, It is similar to what happens in Eq. (24): the velocity Z;
converges to the critical value v,, as the time ¢ goes to infinity. Fig. 3.1c shows,
in the early stage of segment I, the velocity increases rapidly. But, when the

velocity is closer to the critical value, its rate of increase is slower (the

acceleration is smaller). The reason is that the cross-flow drag bz'[% increases
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proportionally to the square of velocity. So, the resultant force which includes
the cross-flow drag and the net force becomes smaller when the velocity
increases, and the acceleration also smaller as shown in Fig. 3.1b. As a result,
the velocity increases slower. Mathematically, the velocity reaches the critical
value at the time of infinity. This does not occur in reality. It is true that the
velocity increases slower in the later stage of segment I, but it must attain the
critical value after a limited period of time. This contradiction derives from the
mathematical model, presented in Fossen (1994), which is used to describe the
motion behaviors of the UUV. Being verified by experiments, the model is said
to reflect the relationship among the states of the vehicle in the best way, but
this does not mean that it accurately reflects what actually happens. On the
other hand, perhaps the current mathematical tools such as functions or
operators are still not able to describe the essence of this relationship in which
the velocity reaches the critical value after a limited period of time, not
approach it. However, the model does not lose its representation because of this
problem, but it is still the means by which we come closest to the actual

behaviors of the UUV. Our concern now is how to use it properly.

Note that, according to the mathematical model, there is a very narrow
neighbourhood of the critical value v,, denoted o,, in which the velocity
converges extremely slowly. This neighbourhood does not exist in reality, so
we need to determine and eliminate it. Here, the upper limit of J, is chosen

equal to the critical value v,,, and its lower limit is &.v,,.
o,=[Ev, v,] 47)
where £<1 and & =1

The value of £ is chosen so that the time when the velocity, in the mathematical
model, reaches £.v,, is equal to the time when the velocity, in reality, reaches

v That time is tl*. And, the value of £ should be verified by experiments.
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So, to calculate tl* by Eq. (46), we should choose:

=&y, =EJfHTb=v, (48)

Substituting Eq. (48) into Eq. (46) yields:

L=t = 2.\;5_]‘2'111(:2_61 (49)
And, we have:

W=vi=Ew, (50)

a=2 =z4) (51)

"D, V2, 22
In segment II, the distance travelled is (z, — z:) , the velocity is constant v,,. So,

the time for the vehicle to pass over this distance is (z, —z:)/ v,, - Therefore,

we have:
L=t y2e "% (52)
vm
— (53)
=2, —Az;k 54)
" 13,3, 23

The velocity is zero at 3. So, we have:
Z43(t3)=0 (55)
From Egs. (39) and (55), we obtain:

_Tfl tan(_—“_b'fl.(@ +c4)j =0
a
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or, l3 :te =—C4 (56)

And, we have:

v3=v,=0 (57)
B3=2, (58)
Find Az3':

The depth is z, at #3. So, we have:
Zd3(t3) =2, (59)
From Egs. (42) and (59), we obtain:

cos(_—*/_b'fl
a

ﬁ.ln

(3 +c4)j +es =2, (60)

Substituting the expression of 73 given in Eq. (56) into Eq. (60) yields:
C5=2, (61)

Then, replacing ¢ in Eq. (61) by its expression given in Eq. (43):
cos(_— “_b'fl.(tz + q)j‘ =2, (62)
a

Next, replacing ¢, in Eq. (62) by its expression given in Eq. (38):

%) _
cos(arctan (—m D‘ Z, (63)

We have the relationship between trigonometric function cos and inverse

ZZ—%IH

ZQ—%.ID

trigonometric function arctan as follows:

cos(arctan x) = (64)

1
V1+x?
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So, Eq. (63) can be rewritten as follows:

2
zz—%.ln(l/ 1+_V2/bj=ze (65)
1

Therefore, we have:

_ 2
Az;=ze—z2:7a.ln(l/ i+ ;m/bJ (66)
—J1

For Plan II:

If z, < ZZ (short range), Plan II trajectories, as shown in Fig. 3.2, will be used.

Plan II trajectories can be divided into three segments in a sequence as follows:

— Segment I (the time is from 7y to #;): The net force f is always at the high level
f>. The acceleration decreases from the maximum value f»/a to a certain non-
negative value, as shown in Fig. 3.2b. The velocity increases from vy to v;. And the
depth increases from zj to z;. In this segment, the expressions of the TOTs are also
given as in system (I), including Eqs. (23-25, 27, 28). The initial and final velocity

and depth states are (v, zo) and (v4, z1), respectively.

— Segment II (the time from ¢, or #; to #3): The net force f is changed to the low
level fi. The acceleration instantly changes from the non-negative value (at the final
point of segment I) to a peak negative value (at the initial point of segment II), and
then, increases to a smaller negative value of fi/a as shown in Fig. 3.2b. The
velocity decreases from v; to zero. And, the depth increases from z; to z.. The
corresponding expressions of the TOTs are given as in system (III), including Egs.
(38-40, 42, 43). The initial and final velocity and depth states are (vy, z;) or (v, z2),

and (v3, z3), respectively. Note: t;=t, vi=Vvy, 21=22, 3 =1, , V3=V, =0, 23= Z.

— Segment III (the time from 73 onwards): The net force fis zero. The acceleration

instantly changes to zero and stays at this value. The velocity is also zero.
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The initial and final times, velocities, and depths of each segment are given or

calculated as follows:
" 10, V0, 20, Ve, Ze are given (o, vo, 20, Ve = 0)

7,52

e e

" 11, V1,21 OF tp, V2, 20 and £3, v3, 23

The expressions of #;, vy, z;, and #3 are solutions of the following system of

equations:
) =2=2 (67)
o) =v =7, (68)
Zd3(t3) =2, (59)
Z43(t3) =0 (55)

From Egs. (27) and (67), we have:

2b.f;

——=(t;+¢,)
%.1n(1+e a

V=T, B t+e; =7 (69)

From Egs. (24) and (68), we obtain:

SRR =y

_Zivb'fz(tﬁcl)
l+e @
2.\b.f, (1 +¢,)
or, v = /b ¢ ° (70)
> VI=AJ2/0. —
29b-fy (ti+¢p)
1+e <@

Similar to the previous part (for Plan I), Egs. (55) and (59) lead to Egs. (56) and
(65) as follows:

t3=t,=—C4 = .arctan (v—z/bj‘”z (56)

—J1

a
NEX7
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a

Jb.1,

or, t3= .arctan (Lbj +1 (71)

_fl/

(due to t; = 1, and vi= v,)

2
_a a_ |-
2 b.ln(l/ 1+—fl/bJ z, (65)
2
41
| bj 72

(due to z; = z2 and vi= 1)

Now, the expressions of #;, vi, z;, and #3 are solutions of a new system of

equations as follows:

4 2./b.1, o)
1 Zivbifz(tl‘i'c‘l)
— +€ a
=J/fa/b VT (70)
oS N (f+ep)
1+e
%
ln /1+ 1 72
Ze ( —fl /b] ( )
{3 =———=.arctan (—j+t (71)
—b. Iz J-fi7b) !

Substituting the expression of z; given in Eq. (72) into Eq. (69) yields:

a 1 (1 2\/b.f2 (t1+Cl)) /b a 1 1 1 V12
—.In(l+e ¢ -/ H+e,=27,+—.In +
b fz 1727 % b —fl /b

2

Vi N ) b
—_— (h+e) | |=—. /bty +z,—
b (1+e e J WL Ibhtz =)

or, ln( 1+

Taking the exponential of both sides, we have:
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2 Vb-f> b :
3 ~—=.(t1+c;) —.(z,—Cp— /b.c;)
1+%.(1 21/2]12.01“1)):6 | a vd Ze=Cr=[ folb ¢
— +e
1

Then, squaring both sides, we obtain:

2 . 2 2P ey 2P e (b
(14_ }}l/bj.(l-i_ 21/b.f2.(t1+C1)) —e (tlﬂl).e“ (ze=c3=\ falbcy) 73)

a

Replacing v; in Eq. (73) by its expression given in Eq. (70) yields:

( N )2
——=(t;+c) N "
- 2T —(z,== 21D
+£. l+e ¢ 5 (1 @'(Iﬁ'cl)) —e @ (Il+Cl)_ea (z,—c3=[f2lb.c))
_fl ( @(lﬁcl)) te
l+e ¢
2b.f, 2
2 P . z,=ey = folb.
or, ( @.(l1+cl)) +£( @‘(1‘1_‘_61)) I (ZI+C1)_ea (z,—¢y \/Tcl)
I+e @ —fi \-lte
(74)
M.(fﬁcl)
Set: x=e @ >1 (75)

Because #p and vy are assumed to be zero, ¢; defined in Eq. (23)

is zero.
=0 (76)

a is greater than zero (C2). And it is obvious that #; must be

2/b.f,

greater than zero. So, ——=.(f;{+c¢))>0. Therefore,
a

Nb-fo (ty+cp)

e a
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Y= 2 >0, due to f>, (-f1) > 0 (77)
—J1

2b
—(z,—Cy— fo/b.c;)
h —pa 2 2 1 > 4 (78)

Because ¢y and z; are assumed to be zero, and c; is zero as shown

in Eq. (76), ¢, defined in Eq. (28) has the following value:

¢ :—%1112 (79)

2b 2b
22 (z—ey—hlbe)  (z,+%1n2) 2.2,
a a

b =4ea >4

So, e =
Note: With the values of 7, vy, zo given, we deduce the values of ¢; and ¢; as
shown in Egs. (76) and (79). However, we still keep the notation ¢; and
¢, in forthcoming expressions instead of their true values to maintain the

generality of solutions for future reference.

Using the notation x, y, h defined above for Eq. (74) yields:
(x+D*+7.(x=D* =hx

2_, Ythi2-1
y+1

or, x +1=0 (80)

The quadratic equation above has two roots as follows:

2
o o 7HOSh 1+\/(7+0.5h 1) B
y+1 y+1

2
o, 2 1+O5h 1_\/(;/+O.5h 1) 0 (rejeeted)
y+1 v+l
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X, is rejected because its value is less than 1. It does not satisfy the inequality

(75). This is demonstrated as follows:

Set

Now, we have:

_y+0.5h-1

- 1 (81)

n can be written as follows:

n:(;/+1)+0.5h—2:1+0.5h—2
y+1 y+1
Due to & > 4 as shown in Eq. (78) we have 0.5h-2>0. We

0.5h=2 >0. As a

also have >0 as shown in Eq. (77), so

0.5h-2
y+1

X, =n=n* =1 (82)

>1.

result, n =1+

Because n is greater than 1, we have the following chain of inequalities:

n>1

-n<-1
—2n<-2
—2n+1<-1
n?—2n+l<n®-1
(n—-1)* <n*-1
n—l<m
n—m<l

So, x,=n —n?-1<1 (rejected)
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Thus, the root of the equation (80) is as follows:

2
SO . O e 2 1+\/(7+0.5h 1) B 3

y+1 y+1

After getting the value of x as shown in Eq. (83), we can calculate the value of

t; as below.
Eq. (75) is rewritten:

2Jb.f>

— == (t,+cy)

x=e 4 (75)

Taking the logarithm to the base e on both sides of the above equation yields:

IHXIM.(II+CI)
a
or, h=—— _Inx—c (84)
s 1 — - Y
2Jb.f,

Therefore, t1, vi, 21, Or f, V2, 22, and 13, v3, z3 can be calculated sequentially as

follows:
7’:% (77)
—J1
2b
22 (z,—cy—folbc))
heea 276 2 1 (78)
n:—”ifi"l @1)

x=x1=n+\/n2—1 (83)

a

L=ty =
N

Inx—¢ (84)
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2Jb.f,

(f+c))

—l+e @
V== fo/b. . (70)
2b.f, (e
1+e
a Ll’fz(mcl)
4] =z2=E.ln(l+e a )= folbtj+c,y (69)
a Vi
ty =t, =———.arctan| —— |+t (71)
RN ( —fl/bj 1
v3=v, =0 (57)
3=2, (58)

3.2 Energy-saving trajectories

In this section, we just discuss energy-saving trajectories (ESTs) applied for
driving the vehicle in mode of moving down. Because the vehicle buoyancy is
usually made slightly greater than the vehicle weight (the positive net buoyancy, N
=B - W > 0, allows the vehicle to float to the surface in the event of a failure), in
mode of moving up, the best energy-saving control way is to turn off all the
thrusters and let the vehicle float slowly to the desired position.

For energy-saving trajectories, our approach stems from using a thrust force at
which the efficiency of thruster(s) is maximum, named the energy-efficient thrust
force; and from an energy-efficient control strategy in which the accumulated
kinetic energy of vehicle will be fully utilized in motion control, i.e., the thruster(s)
is not used to brake the vehicle velocity during the maneuver.

Accordingly, in the constant velocity and acceleration periods, the thruster(s)
will operate at the energy-efficient thrust force, denoted Uy , to save energy. The

corresponding net force is f> .
fr=uy—N (85)

In the case of TOTs, the thrust force u is equal to u,, whose value is chosen as large
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as possible to achieve a high velocity, in order to shorten the travel time. However,
in this case, the thrust force u is equal to the energy-efficient thrust force u, , whose
value is usually less than u;. So, the vehicle velocity is smaller, the travel time is

longer. In return, the energy consumption is lower.

In the deceleration period, our control strategy is not to use the reverse thrust
force u; to brake the vehicle velocity as in the case of TOTs. Instead, the thruster(s)
will stop operating; and the vehicle, with the kinetic energy accumulated in the
previous period, will drift to the destination without propulsion. This strategy saves
energy significantly. Indeed, in the case of TOTs, the vehicle is propelled at a high
velocity, and comes very close to the destination before entering the deceleration
period. This way helps the vehicle move quickly to the destination; however, it
obliges the vehicle to use a high reverse force (u;) to brake the velocity quickly in
the deceleration period, in order to stop right at the destination at the end of this
period. This method brings the benefit of saving time, but wastes energy. It could
not utilize the accumulated kinetic energy, but also spend more energy to eliminate
it — a double waste. Here, in the case of ESTs, the vehicle starts the deceleration
period when it is quite far from the destination. Without any thrust force, the
vehicle velocity will decrease due to the resistance of the cross-flow drag and the
positive net buoyancy, it is expected to be equal to zero as soon as the vehicle
arrives at the destination. The thrust force in this period ul’ is zero, so the

corresponding net force f; is as follows:
fi=u,-N=-N (86)

due to ul =0 (87)

With the use of the energy-efficient thrust force and control strategy as
presented above, the travel time is longer; in return, the energy consumption is
minimized. The expressions of ESTs (z,, z;, Z;), and the formulas of milestones
(ti23) and states (vip3; zi23) are similar to the ones in the case of TOTs,

respectively; except to replace f; with fi, and f> with f5 .
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Chapter 4

Trajectory-Tracking Control

In this section, we present the depth trajectory-tracking control of the UUV and

the design of trajectory-tracking controller using the sliding mode method.

4.1 Trajectory-tracking control

The depth trajectory-tracking control can be described by the control system
block diagram shown in Fig. 4.1. In this diagram, the block UUV contains the
model of the vehicle, and the model of thruster(s) (actuator) is ignored. The inputs
of the block Trajectory Generator are the beginning and ending velocities and
depths. This block calculates the optimal trajectories and sends them to the block
Trajectory-Tracking Controller. The feedback signals of the vehicle states such as
the acceleration, velocity, and depth are also sent to the block Trajectory-Tracking
Controller. This block contains our controller which determines the control force u

required to drive the vehicle for tracking the desired trajectories.

disturbance d

- . | Trajectory-
Zo V Zy Z ! z, Z
00, Tg:ﬂ;i;?g d.. a, Tracking u Uuv —
Zer Ve = 2d Controller

A

Fig. 4.1 UUV depth control system block diagram

4.2 Trajectory-tracking controller

As mentioned, the range of the net force f, which is used to design the optimal
trajectories, is determined from the value of the net buoyancy N and the desired
range of the thrust force (from u; or ul’ to up or uz’). So, to have a good

performance, a well-designed trajectory-tracking controller should require a control
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force whose value is always within that desired range. This issue is a priority in our

design.

With the sliding mode method, when there are no uncertainties, the control
force is maintained within the desired range which is used to design the optimal
trajectories; otherwise, it may be outside the desired range. So, the thruster(s)
should be chosen to have appropriated thrust margins such that it can meet the
potential maximum commands of the control force; in other words the maximum
forward thrust force of the thruster(s) should be greater than the maximum forward
control force required by the controller, and similarly the maximum reverse thrust
force should be greater than the maximum reverse control force (in absolute form).
The difference between the maximum forward or reverse thrust force of the
thruster(s) and the designed thrust force u, or u#; (in absolute form) is denoted as the
positive or negative thrust margin, respectively. The values of these margins
depend on the parameters of the controller, the dynamics of the vehicle, the
dynamics of the thruster(s), and the shapes of the designed trajectories (smooth and

feasible or not). These margins will be presented in detail in the next chapter.

In tracking control, another issue to be considered is the effects of uncertainties,
which include dynamic perturbations (unstructured and parametric uncertainties)
and disturbances (underwater current,...), on the performance of the controller.
They greatly affect its robustness. A trajectory-tracking controller without
robustness to uncertainties will fail in its tracking mission. In this dissertation, we
use the sliding mode method to design the trajectory-tracking controller because it

can provide the controller with the robustness in dealing with uncertainties.

The mathematical model of depth motion of the UUV with uncertainties is as

follows:

ai+bz1zI+N=u+d (88)

In Eq. (88), a, b, N are parametric uncertainties, estimated as
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a, l;, N , respectively; d is disturbance. Their bounds and values are defined as

follows:
Ain <a< Ao s 4= (amax +amin) , Aa= (amax _amin) , (89)
2
e 00)
—D<d<D,d=0,Ad=D>0, N, <N<N,__, 91)
N:(Nmax+anin) AN:(Nmax_Nmin) (92)
2 ’ 2

4.2.1 Sliding mode control law

The sliding mode method is based on the idea of keeping the scalar quantity s,

which is a weighted sum of the position error (z—z,), the velocity error

(z—24).and (not required) the acceleration error (Z—2Z,), at zero (Slotine and

Li, 1991):
s=0 93)
Here, the expression of s is chosen as in Eq. (94):
S=(—2)+ Mz—zy) (94)
where 4 > 0 is the weight parameter

Therefore, the task of the controller is to take s to zero. And, when s approaches
zero, position error (and velocity error, also) approaches zero too, and thus,

trajectory-tracking is performed.

Once s is zero, to keep it at this value, the derivative of s is expected to be zero:

s=0 (95)
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From Eq. (94), we can easily deduce the expression of s as follows:
§=(Z-Z)+Mz2-24) (96)

From Eq. (88), the expression of 7 is:
.1 s
Z=—.(-bzlZI-N+u+d) 97)
a
Substituting Eq. (97) into Eq. (96) yields:

j:l.(—b.z'lz'I—N+u+d)—Zd+/1(Z_Zd) %)
a

So, if § =0, we have:
1 . % 1Uf
— (b2l ZI-N+u+d)-Z;+ A(z-2;,)=0
a

or, u=bzlz1+N+ai;—Aa(z-2,)—d 99)

From Eq. (99), the best approximation # of a continuous control law that

would achieve § =0 is as follows:

G=bz|z\+N+ad.z,;—Ad.(z—z2,) (100)

And, the actual control law which can be robust to uncertainties is a

discontinuous function chosen as follows:

u=u-K.sgn(s)
=bz1 214N +a.z; —Aa.(z—z,)—K.sgn(s) (101)
where, sgn(.) is the signnum function, defined as follows:
1 if s>0
sgn(s)=< 0 if s=0 (102)
-1 if s<0
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K is the design parameter chosen so that:
s < =nlsl <0 (103)

where 7 is a strictly positive constant

4.2.2 Design parameter K
The condition (103) is given to ensure that the vehicle is always driven towards
the states at which s is zero. Indeed, because $.s is always negative as required in
(103), if s is a positive value, s must be negative, meaning that s is decreasing to 0;
conversely, if s is a negative value, § must be positive, meaning that s is increasing

to 0. Here, we will show how to choose K so that the condition (103) is satisfied.

Substituting Eq. (101) into Eq. (98) yields:

s:b‘b.z|z'|+[ﬁ—1j['z'd—/1(z'—z'd)]+l<N—N)+£—£-sgn(s) (104)
a a a a a

Then, substituting Eq. (104) into the inequality (103), and noting that

s.sgn(s) = |sl, we have:

—nlsl 2 {M.Z"Z'H(ﬁ—lj[id —1(Z—Zd)]+l(1\7—N)+i}.s
a a a a

—E.Isl (105)

a

Moving the term K |slof the inequality (105) to the left hand side and

rearranging the terms lead to:

Kisl 2 [(0-b).21214(a-a)[z,— A - 2)|+(W = N)+d .5
+7.als] (106)

38



It is easy to realize that the inequality (106) is always satisfied if K verifies:

K 2 |b-b)2121+(a-a)[z, - A - 2)]+(N = N)+d|+ 7.0 (107)

A

From Eqs. (89-92), we have Ab = |b-bl, Aa =2 la—al,

AN 2 I]Q—NI, and D > Id|. These in turn lead to:

K 2Ab.z2% +Aalzy — AUz —2y)|+ AN + D+ 1.y, (108)

So, our sliding mode controller is designed as given in Eq. (101) with K chosen
by (108). To avoid chattering by the use of the signnum function sgn(.), we can

replace the signnum function with the saturating function as follows:

sgn(s/ @) if Is/@l >1

) (109)
sl otherwise

sat(s/ @)= {

where ¢ > 0 is the boundary layer thickness.
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Chapter 5

Thrust Design

5.1 Normal thrust

This section presents how to calculate the thrust forces required to take the
vehicle to destination with a given travel time. This is an inverse problem which
gives us distance and travel time, and asks about the required thrust forces. It is
applied for designing the normal thrust which is the normal operating point of

thruster(s) when there are no uncertainties.

We will use criterion of optimal time as a platform for calculating these forces.
This means that we will use the results of Section 3.1 to calculate the normal
thrusts which turn out to be the thrust forces u; and wu,. The criterion of time
optimality is chosen instead of the one of the energy efficiency because the range

[u; us] covers the range [ul’ uz’].

The problem is stated as follows: Calculate the thrust forces u; and u, required
to drive the vehicle from the depth of zero to the depth z, with the travel time #,,
according to the criterion of optimal time. Assume that z, > Ze*; and ty, vg, 20, Ve = 0

and the ratio y = f>/(-f1) is given.

Solution:
Set At =t1,—1, (110)

Find Ats :

Eq. (56) is rewritten:

t3=t,=—C4 = ¢ arctan| —2— +1 (56)
J-b.f J-filb
So, we have:
Atgzte_lé:\/_—-arctan( = Z/bj
1 1



or, Ay =a. |- .arctan(7) (111)
b.f,

dueto —fi=f,/y and vy,=v, =.f5/b

m

Find ;"

Eq. (49) is rewritten:

* —a 1 f
t = Jn 49
o b f, (1+§j (52)
From Eq. (76), we have c¢; = 0. So, we obtain:
* —a 1—5
t, = Jn 112
Yo b, (1+§j (112

Find z. :
From Eqgs. (27) and (51), we have:

* d 2bffz(ﬁ*"'cl) *
7 :Z_ll’l(l'i'e )_‘\/fZ/b.tl +C2 (113)

Replacing f" in Eq. (113) by its expressions given in Eq. (112); and replacing
ci and ¢; in Eq. (113) by their values given in Eqgs. (76) and (79) yields:

z =3.1n(;j (114)

b J1-¢&2

Eq. (66) is rewritten:

Az3=—ln[/ 1+_f1/bj (66)

or, Az =%.ln(\/1+ 7) (115)

dueto —fi=f,/y and vy=v, =.fo/b

m
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Eq. (44) is rewritten:
z: = Zl* + Az;: (44)

Substituting Egs. (114-115) into Eq. (44), we obtain:

= a 1+7/
zezzjn(h_gz) (116)

Find f> and f;:

We easily recognize that:
+AL =1, (117)
Replacing 1, in Eq. (117) by its expression given in (52) yields:

ES
Ze —%e

f +AL + =B
vm
* * g —Z*
or, t +At; + =% =t 118
RN e
dueto v, =.f/b
Then, substituting Egs. (111), (112) and (116) into Eq. (118):
a I+y
Z,——.In
—a 1-¢Y, [7 b ( 1—§2j
.ln( j+a. .arctan (\7) + =t
2.0b.f, \1+¢& b.f, JH!b ¢
2
[a.ln(\}r_fj+a.\/;_f.arctan(\/;_/)+b.ze}
or, fo= Lvd (119)

bi?
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And then, we can calculate f; as follows:

fi=—= (120)

Find u, and u,:

After having the expressions of the net forces f> and f; as given in Egs. (119)

and (112), we easily calculate the thrust forces as below:
u =fi+N (121)

5.2 Thrust margin
Back to the optimal trajectories, the estimated parameters a, l;, and N ; instead

of a, b, and N which are parametric uncertainties; will be used in Eq.s (23-25), (27-

28), (38-40) and (42-43).
From Eq. (11), the designed net force f; can be rewritten as follows:
fa=ug =N (123)

where u, is the designed thrust force

According to the conventions presented in Section 3.1, u,; = u, corresponding
to f;=/f, for the constant velocity and acceleration periods, and

u, = uy corresponding to f; = f; for the deceleration period. So, from Egs. (13),

(33) and (123), we obtain Eqgs. (124-126) as follows:

Uy =a.3, +bz5 +N (125)
or, Uy =45, +bily+ N (126)
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With the controller designed as given at Eq. (101), if there are no uncertainties;
i.e., a, b and N are exactly equal to a, b and N, respectively, and d is zero; the

control force u will be approximately equal to u, and u; in the relevant periods.
However, if the uncertainties exist, the control force u will have to be greater than

uy, and less than u; to be able to achieve a good tracking performance.

Assuming that [u; u;] is the thrust range of thruster(s), uuq, and u,, are the
maximum and minimum values of the control force required by the controller, we

have the following relationships:

Up 2Upay >Ur >0 and  O0>uy>u

L2
min =

So, it is necessary to find the values of u; and uy, satisfying the inequality (127)

because they are used to choose the thruster capacity.
Set pPTM =u;, —u, (128)
nTM =u; —u, (129)

pTM and nTM are positive and negative thrust margins, respectively, we will do

estimate these margins as presented below.

From here onwards, the function sat(s/¢) is used, instead of the function sign(s),
for the controller given at Eq. (101) to avoid chattering; and the parameter K is

chosen as the following:
K = Ab.z? + Az, — Az —2y)|+ AN + D+ .y (130)
(see the inequality (108))
5.2.1 Positive thrust margin pTM:

In this section, we will find the formula of pTM. From Eq. (109), we have the

following inequality:

sat(s/¢) 2-1 (131)
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Multiplying both sides by -1, we have:
—sat(s/¢) <1
Then, multiplying both sides by K, we obtain:
—K.sat(s/¢) <K
Next, adding both sides by i yields:
u—K.sat(s/@) <a+K
Due to u =i — K.sat(s / ¢), the above inequality becomes:
u <i+K (132)
Substituting the expressions of # and K given in Egs. (100) and (130) into the
inequality (132):
u <bzlzZ\+N+a.5,—Ad.(2—2,)

max

+Ab.z” + Aa|i; = A= z)|+ AN+ D+11.a
Dueto z1z1 < 2%, the following inequality can cover the above:

u <bz?+Abzr+ai, - Aai—z,)

+Aa.|'z'd —ﬂ(z'—z'd)|+1§7+AN+D+77.a

max

Due to h+Ab = bax and N+AN = N, .x» We have:
u <by, G2 +ai;—Ad(z—z,)
+Aa|Zy — AUz = 2g)|+ Nipax + D+l (133)

It is easy to realize that the control force can only get the maximum value in the

constant velocity and acceleration periods. So, we only need to consider the

inequality (133) with the trajectories Z;, z,; designed for segments I and II. As a
result, Z,; is non-negative. Due to A > 0, it is easy to realize that the right hand side

of the inequality (133) gets greater when the velocity error (zZ— Z,)1s non-positive.
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Therefore, we could only consider the below constraints:

u <by, 2t +ai,—Ad(z—2zy)
+Aa.|Zy = A2 =2)|+ Ny + D+ 1y (133)

Wlth .Z.d :Zdl or Zdz 20, Zd :Zdl or Zdz 20, (Z—Zd)so, /1>0 (134)

From the constraints (134), we deduce Z;—-A(z—2,;)=0. So,

|2, = Mz —24)| = %4 — A(z—2,). The inequality (133) becomes:

u <bhy, 22+ (@+Aa)7, —A(@+Aa).(z—2))+N o + D+1ag,,

— “max
.2 . ..
or, U <bhy 2" +apg-Zg — Al (2= 27)+Npax + D+ 1.0« (135)

due to a+Aa=ag,,

The term 22 is equivalent to [(z’—z'd)+ Zg ]2. So, the inequality (135) can be

rewritten as follows:
u < bmaX'[(Z — g ) + Zd] tmax-Zq — ﬂ'amaX'(Z —Zg )+Nmax +D+ 1]-Qmax
-2
Zq +Nmax

or, U <dp,,-Zg+bnaix

+b . (2—2)" = (Al = 2By 2g) (2= 2g) + D+1a, (136)
From Egs. (125-126) and (134), we have:
Uy =z, +bz3+N (137)
Then, from Egs. (136-137), we deduce:

u SAaZy+Abz2 +b . (2—77) = (At —2by 20)(2—24)
+uy +AN + D +1n.a,,, (138)

From Eq. (109), we have Isat(s/ @)l <I1.So, if the designed trajectories are
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smooth (no step changes) and feasible, and the parameter K is chosen so that the
inequality (103) is satisfied, we can expect that the scalar quantity s will be

bounded as in the following inequality:

sl <¢ (139)
or, 1(z=2,)+AUz—2z,) <¢ (140)
If we set:

(2=2)=po (14

p is also bounded as follows:

lpl < u, with g >0 (see Section 5.2.3) (142)

Substituting Eq. (141) into the inequality (138), we obtain:

u SAai,+Ab.z 2 +b . B%p* — (At —2bp 2g) PP
+uy + AN + D +n.a,,, (143)

with -u4<p<0, due to (2-2,)<0and |p| < u from the constraints

(134) and (142)

The sliding mode controller tries to reduce the scalar quantity s, which is a
weighted sum of the position error (z -z, ),and the velocity error (z -z, ), with the
weight 4 as given in Eq. (94). So, if the smaller the position error is required, the
greater the weight 4 should be chosen. As a result, the term (4., — 20,05 -24) 1S

usually non-negative. So, the right hand side of the inequality (143) gets the

maximum value when p =-4.

o If (A, — 2Dy 2g)20

max
As discussed above, replacing p by —u in the inequality (143), we have a new

inequality which can cover the old as follows:

47



U SAaZy+Ab.2," + by 917+ (A = 2bnax 20Dl
+uy +AN + D +1).a,,, (144)

Set gy =Aa.Z; +Ab.z, 2 _2upb ax - (145)

From Eqgs. (144) and (145), we should choose:
u, =max(g,)+us +AN + D+1.a,, +pPAa,, +u>9* b (146)

where max(gj;) is the maximum value of the function gj;.

So, we get the formula of pTM as follows:

pTM =u, —u, =max(g;;)+AN +D+n.a,,,,
+UPAay,, + 1O b (147)

The function g or gui(f), which is a function of the time #, can get the

maximum value at one of the following values of time #:

=0 (148)
t=|t} =t,, with t, >1 (149)
£ = {t % =0, t >0} (150)

In fact, the expressions of Z;; and z,;; will become the expressions of Z;, and

24, When t>tf . So, for finding t;311 as required at Eq. (150), we only need to
replace 7; and Z; in the function g;i(f) by the expressions of 7, and Z,,
respectively. As a result, we have:

. Aa\/bfz Aba\/Tz+ﬂ¢ab

—d

-G
2\/bf2 Aa«/bfz Aba\/]72 HUP.a.byy

(151)
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So, max(gy,)=max { g (th)s g P, ghl(til)} (152)

o If (A, — 2Dy 2g)20

max

The term (A.a,,, —2b

nax -Z¢ ) could turn negative at great values of the vehicle

velocity z,. In this case, we set:

g =Aai, +Abz b, B p* —(Aay, —2by ig) D0 (153)

From Egs. (143) and (153), we should choose:

u, =max(g;,)+u, +AN + D +1.a,,,, (154)
where max(gy») is the maximum value of the function gj,.

So, we get the formula of pTM as follows:
pTM =Mh—l/l2:maX(gh2)+AN+D+77amaX (155)

The function gy, or gin(t,p), which is a function of two variables 7 and p, can get

the maximum value at one of the following points:
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(th: Pha) = (0,0); (1. p72) = (1,0)
(T, Pitn) = (0,=40); (1}, P12) = (12, —0)

dg, (0,
(th- Piny) = (0, p) ‘ %’))zo, 0>p>—u

dgy,(ty, P) _
dp

(t,p)= (f;?z’/’f?z):(fz’/’)‘ 0,0>p>—p

(th2 th) (,0) ‘ =0, 0>t>1

dghz (f —H)

(thas Ph2) = (=) ‘ =0, 0>1>1,

ath =0 8gh2 -0
9 9 — Y — Y,
(tha> Pa) =(t,p) | Ot op
0>t>1), 0>p>-u

with 7, > 1,
It is easy to find out:
p22 = ﬂ"amax /(2¢bmax)

PPy = (Aag, —2v, by ) 2Pb, )

7
Ihp =0
i Aa\/bfz A |12 + by,
8 —da
Ihp = —q

2bfz Am/bf2 Aba\/]Tz UPab,.

We can find the solutions for 122 and ,022 in closed-form expressions, but they

are too long to be presented here. Readers can try to find these expressions.

So, max(g,,)=max{g,,(t:r. pir)}, i=1,2..9 (156)

Thus, the positive thrust margin pTM could be determined by Egs. (147) and
(152), or Egs. (155) and (156).
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5.2.2 Negative thrust margin nTM:

The formula of n"TM can be achieved as below.
From Eq. (109), we have another inequality as follows:
sat(s/ @) <1 (157)
Multiplying both sides by -1, we have:
—sat(s/¢) =2-1
Then, multiplying both sides by K, we obtain:
—K.sat(s/¢) =2—-K
Next, adding both sides by i yields:
u—K.sat(s/@) 2u—-K
Due to u =i — K.sat(s/ ¢), the above inequality becomes:

u

<>

-K (158)
Substituting the expressions of ## and K given in Eqs. (100) and (130) into the
inequality (158):
u 2bz1 214N +a.7, — Aa(z—2,)

~Ab.z* —Aa|7y — Az —2y)|— AN = D=1.ap,,
Dueto zIz1 < 2%, the following inequality can cover the above:

u 2bhzt-Abz +ai, - Aai-z,)

~Aa|ziy— M=)+ N-AN-D-1.a

max

Due to h—Ab = b, and N—-AN = N, i, we have:
U 2byy 22+ Az, —Ad(z—2y)
—Aa.|Zy — Az =2,)|+ Ny — D=1y (159)
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It is easy to realize that the control force can only get the minimum value in the
deceleration period. So, we only need to consider the inequality (159) with the

trajectories Z,;, z, designed for segments III. As a result, 7, is negative. Due to 4 >

0, it is easy to realize that the right hand side of the inequality (159) gets smaller

when the velocity error (zZ—Z,)is non-negative. Therefore, we could only consider

the below constraints:

u b a7, —Ad(Z—17y)
~Aa|z; —AMz—2)|+ Ny, —D—1.a (159)

max

From the constraints (160), we deduce Z;,—-A(z—2z;)<0. So,
|2, = Az —24)| =—Z%4 + Az —Z,). The inequality (159) becomes:
u 2b 2P+ (a+Aa)Z, - A(a+Aa).(Z—2y)+ Ny — D=1,
or, u 2b i 22 +ag, iy —Adg (2= 2+ Ny — D =1, (161)

(dueto a+Aa=a,,)

The term 22 is equivalent to [(z’—z'd)+ Zg }2. So, the inequality (161) can be

rewritten as follows:
u b 'n'[(z_zd )+Zd:| + Amax 24 _l'amaX'(Z_Zd)_i'Nmin _D_n'amax

or, u 2 amax"zd +bmin'Z.§ + Nmin
. . \2 . . .
+bmin.(z -2y ) — (g —2bin-24)-(2—24) — D —1.ayx (162)
From Egs. (124) and (160), we have:

w =43, +bz2+ N (163)
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Then, from Egs. (162-163), we deduce:
U = Aaz, —Ab.zy by (2= 24)% = (Aay = 2bin-20)-(2 = 24)

+uy —AN =D —1n.a,,,, (164)

Similar to the previous section, we substitute (z—2,)= p.¢ into the above

inequality:

iy ~AN —D—1.a,, (165)

with 0<p<u, due to (£—z;)=0and |pl < u from the constraints

(142) and (160)

Set g, =Aa.i; —Ab.z > +bi 8.0 — (N, —2by i 20) 0P (166)

From Egs. (165) and (166), we should choose:
l/ll =min(gl)+u1—AN—D—77.amaX (167)

where min(g;) is the minimum value of the function g;.

So, we get the formula of nTM as follows:

nTM =u; —uy =min(g;)—AN —D—1n.a,,,, (168)

The function g;or g((t,p), which is a function of two variables ¢ and p, can get

the minimum value at one of the following points:
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i} P = (1,00 (F.p7) = (13.0)
6.0 = (ty, p0); (1, P} = (13, 0)
dg, (1,
i .01)= (1. ) ‘ 1P o < pep
dp
dg, (ts,

P =| . p) =13, p) ‘ %p’%o, O<p<u
. p))=(1,0) ‘ %zo, 1y <t <t
@, p}) = (t, 1) %z&tz«%@

) o 981 _o, %8 _,
(t/,p))=(tp)| ot op
| LH<t<tz, 0<p<u

with t2 >t1*, Vo =V t3—_—tf =—Cy

It is easy to find out:
P = (Aay,, —2v) by ) 2pb )
pl6 = ﬂ'amax /(2¢'bmin)

tl7 =l3=1;=—C4 (rejected)

i DDin| b1
tlgz—a.arctan(’qu o fl}—q

5.1, Aab+Ab.d
t9 _ —a ﬂ'amax
) =

—A.arctan G
J-b. 2. /‘bfl (Aab+Aba+b)

So, min(g,) =min{g, (. p)}, i=1,2..9
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Thus, the negative thrust margin nTM could be determined by Eqgs. (168) and
(169).

5.2.3 u-determination

As mentioned in Section 5.2.1, when the scalar quantity s is bounded

Isl <¢ (139)

the velocity error is also bounded. Obviously, the position error is too. Their

bounds can be found in Slotine (1983) or Slotine and Li (1991).

We have the expression of s as given in Eq. (94):

s=(G-2)+ Az—2,) (94)

Set Z=(z—z,), position error (170)
L dz .. .

So, Z= E =(z—2zy4), velocity error (171)

The expression of s can be rewritten as follows:
s=7+A32 (172)
Due to Z(0) =0, taking the Laplace transform £ of both sides of the above

equation yields:

S=(p+A).Z (173)
where,  pis the Laplace variable

S =8(p)=£(s)

Z=7(p)=%(3)

From Eq. (173), we have:

1

7= .
(p+A)

S (174)
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Next, taking the inverse Laplace transform of both sides of Eq. (174):

i) 1,
Z f{(p+/1)} ) (175)

where, £} is the inverse Laplace transform

the notation * denotes the convolution product

We have £} ! S (176)
(p+4)

So, according to the definition of convolution, Eq. (175) becomes:
t
7= j e A s(t—1)dr (177)
0
Dueto |s| <¢, wededuces |s(t—7)l <¢.So, we have:
t
171 < ¢.je‘“dr (178)
0

Calculating the value of the integral at the right hand side of the above

inequality, we obtain the bound of the position error as follows:

H S%.[l—e_’b]S% (179)

(due to e <1, with £>0)
Now, let us find the bound of the velocity error. From Eq. (172), we have:
F=s-A%F (180)

Dueto Is| <¢ and 1Z| <@/ A, we deduce the bound of the velocity error as

follows:

171 s¢+/1.%:2¢ (181)
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So, if we set Z=(z—2;)=p.¢ and assume that | pl < u as given in Egs.

(141-142), we easily deduce:
H=2 (182)

In fact, the much smaller than x the bound of the velocity error can be if the

shorter the response time of the actuator is. For this instance, we have:
lpl < u < u=2
where , is the real bound of the velocity error

A smaller value of u, makes the values of thrust margins smaller. This leads to a
smaller thruster capacity required, which helps us save money. The value of u,

should be determined by experiments.

5.3 Thruster capacity

The engineers need to know the required thrust range [u; u;] to choose the
thruster capacity for the thruster(s). This issue was mentioned in Section 5.2. The
formulas calculating u; and uj, are given in Egs. (146) or (154) and (167). However,
once the values of the thrust margins are available, u; and u;, can be determined by

the following simple formulas:
u, =uy + pTM (183)
w, =u +nTM (184)

Thus, we should choose thruster(s) so that its thruster capacity covers the range

[u; up].
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Chapter 6

Simulation Results

In this chapter, the performance of the trajectory-tracking controller will be

simulated by Matlab/Simulink.

6.1 Model parameters
In simulation, the estimated parameters of the mathematical model of the ROV

Seamor are used. Their values, according to Chen et al. (2007), are listed in Table

6.1.

Table 6.1 The estimated parameters of the ROV Seamor

m (kg) Z,, (kg/m) Z,y (kg/m)
20.4 -68.576 -51.724

So, we have:
d=m-Z; =20.4+68.576 =89kg b=-Z,,=52kg/m

We assume that the parameters a and b have 20% uncertainty, the net buoyancy
is fixed at 6N (no uncertainty), and the disturbance d is not larger than 5 N in
absolute value. Table 6.2 and Table 6.3 show the estimated values and the bounds

of the model parameters used in our simulations, respectively.

Table 6.2 The estimated values of the model parameters

a (kg) bkgm) | N©N) d (N)
89 52 6 0

Table 6.3 The uncertainty bounds

Aa (kg) | Ab (kg/m) | AN (N) D (N)
17.8 10.4 0 5

58



6.2 Controller parameters

The parameters of the controller are given in Table 6.4.

Table 6.4 Controller parameters

5 (m.s?) &
0.001 0.996

A6 ¢ (m.s")
5 0.1

6.3 Thruster characteristics
The dynamics of the thruster(s) is ignored. Thruster(s) is assumed to have an
instantaneous response to the controller’s commands of force. The designed

constant thrust forces are listed in Table 6.5.

Table 6.5 Designed thrust forces

u; (N) uz (N) u’t (N) u’z (N)
45 58 0 46

6.4 Milestones and landmarks

The milestones and landmarks which are used in designing the optimal
trajectories are calculated from the designed thrust forces and the estimated
parameters of the UV model. Their values are given in Table 6.6 for TOTs design

and in Table 6.7 for ESTs design.

Table 6.6 Milestones and landmarks used for TOTs design

Vi (/)

t (s)

vi (m/s)

le (m)

Azz (m)

ze (m)

1.0

5.32

0.996

4.13

0.6

4.74

Table 6.7 Milestones and landmarks used for ESTs design

Vm (/S)

t (s)

vi (m/s)

zi (m)

Az (m)

ze (m)

0.877

6.06

0.874

4.13

1.74

5.88




6.5 Simulation and analysis
6.5.1 Simulation 1
In the first simulation, TOTs of Plan I are used. The ending depth is 8m, which
is greater than z, = 4.74m (see Table 6.6). The controller is applied to the UUV
model without uncertainties to check the clinging ability of the control force to the

designed thrust force. The simulation results for this case are shown in Fig. 6.1.

For this case, the ending time is 9.95s. Segment I lasts from O to 5.32s, segment
IT from 5.32 to 8.58s, segment III from 8.58 to 9.95s, and segment IV from 9.95s

onwards.

In Fig. 6.1a, the control force is almost equal to the designed force except for
the short periods of time at the beginning of each segment. Force deviation in these
periods does not exceed 2 N because these are transitional periods of the control
system. At rest status (segment IV), the controller maintains a force of 6N to

balance the net buoyancy. This helps the vehicle keep its depth constant.

Fig. 6.1b-d show that the acceleration, velocity, and depth of the vehicle track
the designed trajectories very well. Maximum absolute errors of the acceleration,

velocity, depth are 26.4 mm/s2, 4mm/s, and 2.5mm, respectively.

As shown in Fig. 6.1b, the acceleration is about 0.584m/s* at the beginning. It
decreases to zero during segment I, and remains at zero in segment II. At the initial
point of segment III, it decreases to the peak negative value of -1.16m/s>. And then,
it increases to -0.573 m/s” during segment III. At the initial point of segment IV, it

decreases to zero, and stays at this value afterwards.

Fig. 6.1c shows that the velocity increases from 0 to 1m/s during segment I, and
stays at this value in segment II. And then, it decreases from lm/s to zero in

segment III, and stays at this value of zero afterwards.

The controller helps the vehicle move smoothly to the ending depth as shown in

Fig. 6.1d.
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Fig. 6.1 Simulation results without uncertainties for TOTs of Plan I
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6.5.2 Simulation 2
In the second simulation, TOTs of Plan II are used. The ending depth is just
2m, which is less than z: = 474m (plan II). The UUV model also has no

uncertainties. The simulation results are shown in Fig. 6.2.

For this case, the ending time is 3.87s. Segment I lasts from 0 to 2.58s, segment

IT from 2.58 to 3.87s, and segment III from 3.87s onwards.

Fig. 6.2b shows that the vehicle acceleration is 0.584m/s” at the beginning, and
that it decreases to 0.105m/s” during segment I. At the initial point of segment II, it
decreases to the peak negative value of -1.06m/s>. And then, it increases to -0.573
m/s’ during segment II. At the initial point of segment III, it decreases to zero, and

stays at this value afterwards.

Fig. 6.2c shows that the velocity increases from 0 to 0.91m/s during segment I,
and then, decreases to zero in segment II, and maintains this value of zero in

segment III.

The control force and the depth track the designed trajectories very well as

shown in Fig. 6.2a&d.
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6.5.3 Simulation 3
In this simulation, TOTs of Plan I are used, the ending depth is 8m. But the

controller is applied to the UUV model with uncertainties as shown below.

a=a+Aa.sin(21z1.t)

b=b+Ab.sin(21311)

A

N=N
d = D.sin(2t+ )

The simulation results for this model with 20% uncertainty of a and b are

shown in Fig. 6.3.

The existence of the uncertainties forces the controller to give out the
commands of force whose values could be greater or less than the designed force.
Because the uncertainties are sinusoidal, the control force is also sinusoidal to
mitigate their effects as shown in Fig. 6.3a. So, the acceleration and velocity

oscillate around the designed trajectories as shown in Fig. 6.3b&c.

As shown in Fig. 6.3a, the maximum and minimum control forces were 73.06
and -70.4 N, respectively. The maximum absolute errors of acceleration, velocity,
depth are 444mm/s®, 28.2mm/s, and 13.7mm, respectively. The depth error at
steady state (segment IV) does not exceed 5.4mm. This error could be smaller if the

parameter 4 was a higher value.
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Through the first and second simulations, the time optimality of the designed
trajectories was validated. In both cases (plan I & II), the control system always
uses the control forces which are almost equal to the designed forces. If these
designed forces are equal to the maximum forward or reverse thrust force of the
thruster(s), the travel time of the vehicle to the destination could be considered to
be the minimum. However, they should be chosen to be less than the maximum
thrust forces of the thruster(s) so that the thrust margins are large enough for the
thruster(s) can meet the potential maximum commands of the control force, even
with uncertainties. This helps to ensure that the vehicle can track the designed
trajectory as well as expected. In the latter case, the travel time might not be the
minimum, but a predictable and reasonable one. Moreover, the overshoot of the
depth could be controlled very well. For these reasons, the designed trajectories are
named the time-optimal trajectories. They are suitable for driving the vehicle over a
relatively short distance with requirements of exact time and position. For long
distance, these requirements no longer become important, and the vehicle can use

the maximum thrust forces to reach the destination depth quickly.

Our controller is designed based on the assumption that the parameters a and b
have 20% uncertainty. If the uncertainty of these parameters is not greater than
20%, the performance of the controller is good as shown in Fig. 6.3. On the

contrary, the performance is bad, even failure in tracking.

In the next simulation, we assume that @ and » have 50 or 100% uncertainty,
and the thrust range of the thruster(s) is [-100 100] (N). The simulation results for

this case are shown in Fig. 6.4.

In Fig. 6.4d, we see that the depth in case of 50% uncertainty can still track the
designed depth although the depth error increases to 2.4cm, and the control force is
required to 83.25 or -88.25N (Fig 6.4a). However, the depth in case of 100%
uncertainty cannot track the designed depth. The reason is that the control force
required exceeds the capacity of the thruster(s). As a result, the controller fails in

tracking control.
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6.5.4 Simulation 4
In this simulation, ESTs of Plan I are used. The ending depth is 8m, which is
greater than z, = 5.88m (see Table 6.7). The UUV model has no uncertainties. The

simulation results for this case are shown in Fig. 6.5.

For this case, the ending time is 14.54s. Segment I lasts from 0 to 6.02s,
segment II from 6.02 to 8.48s, segment III from 8.48 to 14.54s, and segment IV

from 14.54s onwards.

In Fig. 6.5a, the control force is almost equal to the designed force (46N for the
constant velocity and acceleration periods, ON for the deceleration period) except
for the short periods of time at the beginning of each segment. Force deviation in
these periods does not exceed 2 N because these are transitional periods of the
control system. At rest status (segment IV), the controller maintains a force of 6N

to balance the net buoyancy. This helps the vehicle keep its depth constant.

Fig. 6.5b-d show that the acceleration, velocity, and depth of the vehicle track
the designed trajectories very well. Maximum absolute errors of the acceleration,

velocity, depth are 24.4 mm/sz, 3.5mm/s, and 1.4mm, respectively.

As shown in Fig. 6.5b, the acceleration is about 0.517m/s” at the beginning. It
decreases to zero during segment I, and remains at zero in segment II. At the initial
point of segment III, it decreases to the peak negative value of -0.517m/s>. And
then, it increases to -0.067 m/s” during segment III. At the initial point of segment

IV, it decreases to zero, and stays at this value afterwards.

Fig. 6.6¢c shows that the velocity increases from 0 to 0.877m/s during segment
I, and stays at this value in segment II. And then, it decreases from 0.877m/s to

zero in segment III, and stays at this value of zero afterwards.

The controller helps the vehicle move smoothly to the ending depth as shown in
Fig. 6.5d. Although the travel time is longer than the one of TOTs in the first

simulation, the energy consumption is minimal.
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Chapter 7

Conclusions

In this dissertation, the design of the optimal-trajectories including time-
optimal trajectories and energy-saving ones used for the depth control of UUVs
was presented. The time-optimal trajectories are designed based on the idea of
always using the constant thrust forces whose values are chosen reasonably during
the maneuver. For energy-saving trajectories, their designs stems from using thrust
forces at which the efficiency of thruster(s) is maximum, and from an energy-
efficient control strategy in which the accumulated kinetic energy of vehicle will be
fully utilized in motion control, i.e., the thruster(s) is not used to brake the vehicle
velocity during the maneuver. These trajectories are the explicit functions, which
are the analytical solutions of the nonlinear second order differential equation
representing the depth motion of the UUV. The analytical solutions offer more
advantages than the numerical ones such as easy calculation, simple and unaltered
form, convenient use, etc. Although the proposed solutions are assigned to the
depth control, those can be applied to other direction motion control of UUVs, or to
systems with similar structure and control objective. Furthermore, it is also not
difficult to get the corresponding solutions in which the values of the beginning and
ending velocities (vy and v.) may be different from zero. If these trajectories are
used along with a robust trajectory-tracking controller, time-optimal or energy-

efficient maneuver can be achieved.

The dissertation proposed a trajectory-tracking controller using the siding mode
method. It is shown that even with uncertainties, this controller can force the
vehicle states to the designed optimal trajectories. Its robustness can be guaranteed
if bounds of the uncertainties are known. The effectiveness of the combination of
the above optimal trajectories and this trajectory-tracking controller was
demonstrated via simulation results. If there are not the influences of the

uncertainties, the control forces of the controller will be nearly equal to the
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designed constant forces, on the contrary, they could be different. Therefore, the
thruster(s) should be chosen so that it can meet the requirements of control force of

the controller.

The dissertation also presented the calculation of the thrust range required by
the trajectory-tracking controller. The limit values of the thrust range are references

for engineers to decide thruster capacity for choosing the thruster(s).
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