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Nomenclature

fo = Center frequency

f, = Normalized frequency
Z; = Even-mode input impedance
= Odd-mode input impedance

= Electrical length of the transmission line

A = Wavelength

l, = position of tapped-line point

7, = impedance of the tapped line

(). = loaded quality factor

Zy = characteristic impedance of the transmission line
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Abstract

A suggestion is proposed to use a circuit of microstrip ring
resonators such as Ultra Wideband Bandpass filter in wireless

communication.

The Ring Filter's dimension i1s small, with low insertion loss,
satisfactory skirt characteristic and a constant group delay into

the UWB bandwidth.

This filter makes it possible to control the cutoff frequencies
which are dependent upon the ring and the parallel stub
impedance. The rejected conditions of two cutoff frequencies on

both side of the passband are dependable on parallel stub.

This Bandpass filter has cutoff frequencies between 3.1 and
10.7GHz with the resonable position of stub at the end of
symmetry plane. The circuit conditions of two attenuation poles
at either side of the passband are given together with controlling
them. To reject spurious suppression which 1s placed at
impedance zero, we employ stepped impedance line near input
port and output port. This filter is appropriate for UWB systems

in all applications.
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Chapter 1. Introduction

Since the U.S. Federal Communications Commission(FCC)
released the wunlicensed use of the ultra-wideband(UWB)
(3.1-10.6GHz) for indoor and hand-held systems in 2002[1],
significant research activities and interests have been recently
aroused 1in academic and industrial circles toward exploring
various UWB component and devices[2]. As one of the essential
component blocks, attempts to developing a UWB bandpass filter
(BPF) were made in [3]-[7]. In [3], an initial UWB filter is
presented by mounting a microstrip line in a lossy composite
substrate and the reported insertion loss i1s higher than 6.0dB. In
[4], a microstrip ring UWB filter is constructed by simultaneously
exciting and allocating transmission zeros belows 3.1GHz and
above 10.6GHz. Due to its nature of dual-stopband, this filter
with multiple ring resonators usually has narrow lower and upper
stopbands as well as large size ones. In [5], a composite UWB
filter 1s proposed by combining lowpass and highpass filter
structures or embedding one into the other. In [6], a
broadside—-coupled microstrip—coplanar waveguide (CPW) structure
with tightened coupling degree is utilized to design an alternative
UWRB filter one, two, and three sections. In [7], a novel compact
UWB BPF on microstrip line is constituted using a single
multiple-mode resonator (MMR) that is driven at two sides by

two identical parallel-coupled lines.



There are various kinds of resonators including the coaxial,
dielectric, waveguide, and stripline resonators which are available
in the frequency range from RF to microwavel8]. Coaxial
resonators have many  attractive features including an
electromagnetic shielding structure, low-loss characteristics and
a small size, but their minute physical dimensions for applications
above 10GHz make it difficult to achieve manufacturing accuracy.
Dielectric resonators also possess a number of advantages such
as low-loss characteristic, acceptable temperature stability and a
small size. However, high cost and present-day processing
technology restrictions limit dielectric resonator utilization to
applications below 50GHz. Waveguide resonators have long been
used in this frequency range, possessing two main advantages:
low-loss characteristic and practical application feasibility up to
100GHz. However, the greatest drawback of the waveguide
resonator’'s size 1is that it is significantly larger than other
resonators available in the microwave region. Presently, the most
common choice for RF and microwave circuits remains the

stripline resonator[14].

Due to practical features including a small size, easy
processing, and good affinity with active circuit elements, many
circuits utilize the stripline resonator. However a major drawback
to the use of the resonators is a drastic increase in insertion loss
compared to other types of resonators, making it difficult to
apply such stripline resonators to narrow band filters. Microstrip

line filter designing is reported frequently to use distributed



elements like as coupled line filters and shunt stub filters which

have met an established theory.

However currently suggested diverse microstrip resonators
have high insertion loss due to primary factors such as conduct
loss, dielectric loss, radiation loss and coupling loss. They
obstruct development planner type of filter.

A few papers have been published for attenuation pole
frequency control over a wide range using various combinations
of stub perturbation and excitation angles. There have been many
studies on dual mode ring resonator BPFs because such

resonators have very simple structures[14].

This article extends the transmission line model to our ring
resonator and stub. We will present the conditions for achieving

attenuation poles for such a Ring Filter.

A required bandwidth of UWB is significant which should be

wider than an octave bandwidth about 11096

In addition, we employ a parallel open stub.

The ring and the parallel stub lines creates a stopband frequency

which can be varied by changing the tuned stub.

The contents of the thesis are illustrated as follows

Chapter 1 briefly introduces the thesis, the background and the

purpose of this work.



Chapter 2 presents dual mode of conventional ring filter.

Chapter 3 proposed UWB ring filter design of single stage.
Experimental results of the fabricated filter are also demonstrated

and discussed.

Chapter 4 1s the conclusion of this thesis. It summarizes the
research work and proposed application of this new type of

filters.



2. Conventional Ring Filter Theory

2.1 Introduction

The basic geometry of ring resonator is shown Fig. 2.1. Both I/O
port are positioned 26 length in ring filter. 25 is stub and 0
length which is placed at the end of symmetry plane, which also

contributes to the appearance of attenuation poles at both sides

of passband[15].

Symmetry plane

Z1:>‘/2

Fig. 2.1 Conventional ring filter.
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2.2 Even-0Odd mode Ring resonator

For even—-mode calculation, the symmetry plane in Fig. 2.1 will
act as an open end, ie., as a perfect magnetic wall, and the
equivalent transmission-line circuit of Fig. 2.1 will become as

shown in Fig. 2.2.

Fig. 2.2 Equivalent transmission-line circuit model for even-—

mode calculation.
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f, is normalized frequency and f, is center frequency.
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For odd-mode calculation, the symmetry plane in Fig. 2.1 will act

as an short end, i.e., as a perfect electric wall, and the equivalent

transmission—line circuit of Fig. 2.1 will become as shown in Fig.

2.3
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Fig. 2.3 Equivalent transmission-line circuit model for odd-mode

calculation.

Before calculating odd-mode input impedance 7,

Zl and ZQ
2, = j Ztan (5 f,)

0 __ Z1Z2
Zin - ZI+ZQ

has to know

(2-7)

(2-8)

(2-9)



I = =4 (2-10)
Zint %

S-parameter is calculated by (2-6) and (2-10)

I +r
S, = + (2-11)
Sy = Lty ; L (2-12)

2.3 Conventional Dual-mode ring filter

Use of Dual mode resonators allows the realization of a
compact high-quality microwave BPF(Band Pass Filter) whose
attenuation poles play a role in improving the skirt
characteristics. There have been many studies on dual mode ring
resonator BPFs because such resonators have simple structure
[16]. This paper extends the transmission line model to our ring
resonator and stub. We will present the conditions for achieving
attenuation poles for such a ring filter. The feeding lines are
directly coupled to a ring. The circumference of the ring is one
wavelength Ag long at the center frequency. Attenuation poles in
the ring filter are easy to find. The condition for producing

attenuation poles is given by setting the 521 to zero [17].



_24(4+ %)

Sy, =— 272,73 (tan*0 + 1) (tan®0 e
5

)/A

(2-13)

where
A = (L 24jtand + Z,(Z, + %)) (— ZyZ; jtan’0 — Z, Ztan®0
+ 222+ 22,( 2+ 2,)) jtand + 22,2,7,)

(2-15)

Setting 521 to zero gives the following characteristics equation

for attenuation frequencies, f, = 6,0,/(276)

Z
2, _ 1
tan’0, = 2(1+ Z2)

Zil

s (2-16)

2.4 Calculation and measurement of attenuation

poles of ring bandpass filter

Fig. 2.4 shows the response of the fabricated ring filter with ZO
=Z,=50Q, £,=92.7Q% and Z3=17Q2. The thickness and relative

dielectric constant of the substrate are 0.38mm and 2.2,
respectively. Lower stub impedance i1s to get wider gap of

rejected frequency.
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Fig. 2.4 Photograph of the fabricated bandpass filter.
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Fig. 25 Measured results of the ring filter. (a) Transmission

and reflection characteristics. (b) Group delay characteristic.
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Fig. 25 shows the attenuation poles were observed at 0.81
GHz and 3.19GHz. The total insertion loss including feeding line
loss 1s about 0.18dB and the group delay is about 0.7nsec at the

center frequency of 2GHz.

By using equation (2-16), we can also obtain the following

relationship for the ring bandpass filter.

Z 7
tan*, = 2 (1 + =)= = 0567
v Zy " Zy
08T ‘ !
| L 0.567
06T ‘ ‘
‘ \
\
\ \
02T ‘ ‘
| ‘ \
\ \
. } } J } ?
36.6° ' 134°

Fig. 2.6 The attenuation pole Op as a function of degree.

Hence, the attenuation pole frequencies can be calculated using
tan29p:0.567, which leads to the results in case of 2GHz center

frequency below
37° x 2GHz/90°= 0.82GHz

143° x 2GHz/90°= 3.17GHz
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Table. 2.1 Experimental and theoretical of ring bandpass filter

attenuation pole frequencies

1st Frequency |2nd Frequency
Theoretical 0.82 3.17
Simulation 0.92 3.35
Experimental 0.88 3.36

The experimental and theoretical attenuation pole positions are
shown in Table 3.1, and are 93 percentage in agreement with
each other and simulated result and experimental result have
almost the same result. We think experimental performances have

little error during manufacturing process.

2.5 Conventional b-stage UWB BPF

To obtain high rejection, we have tried various values of the
tuning stub of characteristic impedance and we try to cascade
ring filters. The theoretical values calculated through the (2-16)
equations have been confirmed. And the width and length of each

transmission line can be obtained by Line Calculation Tool.
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(a)

(b)

Fig. 2.7 Models of the designed filters in Designer. (a) single

stage of bandpass filter. (b) 10-pole BPF TFilter.
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However, equations and calculation tool are carried our in ideal
cases, which have not taken into consideration many potential

factors that may affect the performances of filter.

For the above reasons, we utilized an electromagnetic simulator
Ansoft Designer to simulate the designed filter before fabrication.
Fig. 2.8 shows response of attenuation poles versus the stub
width. Even though the width of stub has changed to wider
range, bandwidth of ring filter is not changed significantly. Fig.
2.9 shows total attenuation poles of sum. On one hand we can
get to know the different parts that affect the performances of
mutual effect between microstrip line and ring filter, and on the

other hand we can save both the fabrication cost and time.

0 : V—

1 3 5 7 9 11 13
Frequency (GHz)

Fig. 2.8 Simulated two attenuation poles versus the stub width

of ring filter.

_16_



Ansoft Corporation

0.00 1 R R T
%7 5’9"‘% dn
AT NARS, - xé”‘?
L L L
N Ve Apll Ty § /
iy Wy A
I ! M
-40,00 y 1'; I!l k) dB(S(Pom ?or?))_{L
||| Setup 1 Sweep
4
pfp——
Sohap 1 Sveeep
R —= aoh Y2=_2l0123.c|'u a.oh 10.00 1200 ITY
F [GHz]

Fig. 2.9 Simulated results of 5-stage bandpass filter.

Fig. 2.10 Photograph of the 5-stage UWDB bandpass filter.
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Fig. 2.10 shows the fabricated UWB BPF. The thickness and
relative dielectric of the substrate are 0.38mm and 2.2,

respectively. To produce the necessary 10-poles we have tried
various of stub characteristic impedance, Z3 = 532, 592, 6.8,

799 and 95% in case of 6.8GHz center frequency. Fig 2.7

shows the response of the fabricated 10-poles UWB BPF

Table 2.2 Simulated two attenuation poles (Ist frequency, 2nd

frequency) versus the width of single stub for the ring resonator

Z3 length Simulated results

1st frequency | 2nd frequency
9.5Q 9 mm 1.97 GHz 11.67 GHz
7.9Q 11mm 1.85 GHz 11.67 GHz
6.82 13mm 1.71 GHz 11.78 GHz
5.9Q 15mm 1.61 GHz 11.81 GHz
5.3Q 17mm 1.48 GHz 11.87 GHz
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Fig. 2.11 Measured the results of the 5-stage UWDB bandpass
filter. (a) Transmission and reflection characteristics. (b) Group

delay variation characteristics.
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Fig. 2.11 shows the UWDB bandpass filter has insertion loss
better than -2.3 dB and return loss greater than 10dB in the
passband from 3.8GHz to 9.2GHz. The group delay of the filter is

below 7.4 nsec within the UWB passband.

_20_



3. Proposed compact size UWDB Filter

3.1 Introduction

When we make 5-stage cascade UWDB filter, there is problem
to conjoin one another which have too wide width of stub to

connect because of low characteristic of stub.

Open stub ring filter is made to control the attenuation pole
frequency by adjusting both the ring and the stub impedance.
However, to produce the 1.61GHz and 11.08GHz attenuation pole

positions, we have to produce the minimum stub characteristic

impedance Zs;= 7.3692(16mm).

Fig. 3.1 shows schematic diagram of a microstrip ring filter
with parallel stub. The feeding lines are directly coupled to a
ring resonator. The circumference of the ring is about one

wavelength Ag long at the center frequency.

The ring has Ag/4 length Z; and Z. We employed a parallel

stub which is Z3 = 25Q and length is shorter than A/8 which is

the same effect to the ring resonator’'s stub such as 23: 7.36%

and A4 open stub.

_21_



Z,, M\ /A

2,02

Fig. 3.1 Schematic diagram of a microstrip UWB banspass ring

filter.

Proposed filter shows schematic of ring filter with parallel
stub, which 1s better than one side open stub. We considered
about width and length of parallel stub and try several kinds of

width and length for getting an interesting result.
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S21

(dB)
—_— — — Ag/4
Ag/8
--------- Ag/16
=40 ‘
2 4 6 8 10 12

Frequency (GHz)

Fig. 3.2 Simulated results of transmission response versus the

length of parallel stub.

Fig. 3.2 shows a appropriate length of parallel stub. The
bandwidth of ring filter is getting wider when it takes longer
than Ag/8 stub length. However ring filter has drawback of
increasing insertion loss. If the length is shorter than Ag/8, ring
filter get better insertion loss but bandwidth of the ring filter is

smaller than a longer stub.
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Table 3.1

parallel stub for the ring resonator

Simulated two attenuation poles versus the width of

Parallel stub width| 1st frequency | 2nd frequency
Imm 3.32GHz 10.58GHz
3mm 2.55GHz 11.35GHz
5mm 2.22GHz 12.34GHz
D T
21 a0 |4
1
(dB) 'y (
a0 | 2mm
= ARSIl
-40
2 4 6 8 10 12
Frequency (GHz)
Fig. 3.2 Simulated results of bandwidth versus the width of

parallel stub.

Proposed filter design is satisfied with width 3mm in Ultra

Wideband application The parallel open stub perturbation having

a characteristic impedance of 2582 and length of Ag/8 respectively

at both sides.

_24_
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If the length is longer than Ag/8, filter's bandwidth is getting
smaller and insertion loss is getting bigger and then parallel

stub is placed in the symmetry plane.

Fig. 3.3 Photograph of ring filter with parallel stub.
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Fig. 34 Measured results with parallel stub. a) Transmission
and reflection characteristics. b) Group delay variation

characteristics.
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Fig. 35 Simulated and measured transmission results of single
stage ring filter with parallel stub (width = 3mm) versus single

stub (width = 16mm) ring filter. (a) Simulated. (b) Measured.
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Fig. 35 shows the results between the ring filter with A/4 stub
and the ring filter with parallel stub. We employed a parallel
stub to get compact size and wider upper stopband. The proper
stub’s width is important when applied to cascade structure to
get spurious suppression. If a stub’s width is wider than ring
filter's width, ring filter need longer microstrip IO line to
contact another ring filter and it has drawback in insertion loss
and group delays. Thus, the results indicated that the ring filter
with parallel stub has advantages of size, skirt characteristics

and wider upper stopband.

3.2 Stepped impedance line for spurious suppression

The idea presented in this method which is based on a ring
resonator structure, with the addition of stepped impedance
resonator lines, to construct a high performance bandpass filter.

The stepped impedance lines may have an independent extra
transmission zero in the stop—band without requiring complex
coupling between resonators[18][13]. Without alternating the
passband response, stepped impedance line can be properly
applied to near to both feeding ports in order to control the

positions of the extra zero.

_28_



(a)

T i

(b)
Fig. 3.6 Band-stop circuits. (a) an open stub. (b) a stepped-

impedance stub.

This 1s a very useful feature in practical receivers for rejecting
spurious responses and enhancing the rejection level in the
stop—band of a bandpass filter. The proposed structure can save

more area of the overall filter structure without degrading the

_29_



performance of the bandpass filter. Fig. shown designed A/4 and
stepped impedance line in Ansoft designer.

The band-stop circuits, illustrated in Fig. 3.6, are designed to
excite a band-stop response by adding two A/4 open stubs on
two sides (0  and 180" ) of the ring resonator. Based on
transmission line theory, a transmission line section having a
length (1<A/4) can be replaced by combining a short length (I<A
/8) of line of high characteristic impedance with a short length
(1<A/8) of line of low characteristic impedance. The latter can be
referred to as a stepped-impedance structure. The EM simulated
electric current distributions in an open stub band-stop filter and
in a stepped-impedance open stub band-stop filter at the same

fundamental resonant frequency are shown in Fig3.6.

O P e

_10 L
S21 o0 -
(dB)

— — — A\/4 resonator
_30 L
stepped impedance resonator |
=40
2 4 6 8 10 12

Frequency (GHz)

Fig. 3.7 Simulated results of a A/4 resonator and a stepped

impedance resonator
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I, af4

Open Z0

7

Fig. 3.8 Equivalent circuit of tapped-line resonator.

Fig. 3.6 shows stepped impedance resonator has higher Q factor
than A/4 stub resonator. Figure 3.6 and figure 3.8 show the
tapped-line structure and its corresponding transmission line
model. The position parameters of the tapped line can be

obtained from [16].

or
_ 2 of 2 1¢
Z1=%ZQ.cos | 5 2
where
I, = position of tapped-line point



Z = impedance of the tapped line
(), = quality factor

%, = characteristic impedance of the transmission line

3.3. Fabrication and measurement

We have co—joined both parallel stub and stepped impedance
line for ultra wideband application. Fig. 3.9 shows designed

UWRB filter with parallel stub and stepped impedance resonator.

Fart1 Port2

Fig. 3.9 The proposed UWB filter with stepped impedance

resonator.
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Frequency (GHz)

Fig. 3.10 Simulated results in variable distance between ring

resonator and stepped impedance resonator.

Fig. 3.10 shows appropriate distance between ring resonator and
stepped impedance resonator. If the distance is less than 3mm
the ring filter has getting more insertion loss at higher
frequency. If leave a space more than 3mm, the ring filter’'s skirt
characteristic 1s getting worse. So we chose the gap of distance

between ring resonator and stepped impedance resonator.
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Fig. 3.11 Simulated transmission and reflection results of the

proposed UWB filter.

We focus on the design method of compact size UWB filter. We
try to make single stage bandpass filter and then we suggested
using parallel stub for compact size and step impedance filter for

spurious suppression.
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Fig. 3.12 The photograph of the proposed UWB filter.
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Fig. 3.13 Measured results of the proposed UWB filter;. (a)
transmission and reflection characteristics. (b) Group delay

variation characteristics.

_36_



In many filter applications, in order to reduce interference by
keeping out-of-band signals from reaching a sensitive receiver, a
wider upper stopband is required. A cascade lowpass or bandstop
filter may be used to suppress the spurious passband at the cost
of extra insertion loss and size. Lumped element filters ideally do
not have any spurious passband at all. Bandpass filters using
stepped  impedance resonators(SIR) [17] or end-coupled
slow-wave resonators[18] are able to control spurious response.
We employed stepped impedance resonator which is placed near
both input port and output port. Thus, a wide upper stopband is

obtained in ultra wideband.
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Chapter 4. Conclusion

We can successfully control the attenuation pole frequency of
the ring filter over a wide range using parallel stub which is
placed in the symmetry plane. Using this method is expected to
very useful in Ultra Wideband system. This article presents a
wideband microstrip bandpass filter with parallel stub and
stepped impedance resonator. Electromagnetic simulations, using
Designer shows good agreement with experiments. The proposed
microstrip bandpass filter has the advantage of high performance,
providing wider and deeper stop—band characteristics. The
measured data for the fabricated band-pass filter also shows a
fairly good insertion loss of approximately -0.35dB at center
frequency and group delay wvariation is 0.7nsec. This
size-reducing concept can also be extended in another UWB

radio system.
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