工學碩士 學位論文

A Study on Viscous Damping Effects in Leaf Spring Damper

指導教授 金 鍾 壽

2000年 2月

韓國海洋大學校 大學院

機械工學科

2000 2

Abstract	t1
1.	
1.1	
1.2	4
2.	5
2.1	
2.2	9
2.2.1	9
2.2.2	0
3.	15
4.	
4.1	
4.2	
5.	
5.1	
5.2	
6.	

/

- Fig.2.1 A sectional view of Leaf Spring Damper
- Fig.2.2 A free body diagram for a Leaf Spring Damper pack
- Fig.2.3 Detail of clamping structure of Leaf Spring pack
- Fig.2.4 Coordinates system of Leaf Spring Damper
- Fig.2.5 Schematic diagram for volumetric change of oil cabin by moving inner ring
- Fig.4.1 A prototype Leaf Spring Damper
- Fig.4.2 Photography of Leaf Spring Damper (Type C)
- Fig.4.3 A same model of CNC machine for application of LSD
- Fig.4.4 Attachment configuration of LSD to CNC machine
- Fig.4.5 Schematic diagram of test rig
- Fig.4.6 Photography of experiment system
- Fig.5.1 Illustration of displacements and reaction forces (Type A,500rpm)
- Fig.5.2 Illustration of displacements and reaction forces (Type B,500rpm)
- Fig.5.3 Hysteresis loops of LSD (without oil,500rpm)
- Fig.5.4 Hysteresis loops of LSD (without oil,3000rpm)
- Fig.5.5 Hysteresis loops of LSD (Type A, 500rpm)
- Fig.5.6 Hysteresis loops of LSD (Type A, 3000rpm)
- Fig.5.7 Hysteresis loops of LSD (Type B, 500rpm)
- Fig.5.8 Hysteresis loops of LSD (Type B, 3000rpm)
- Fig.5.9 Stiffnesss coefficients of prototype LSD
- Fig.5.10 Damping coefficients of prototype LSD

Fig.5.11 Hysteresis loops of LSD (without oil, 1000rpm, x-direction) Fig.5.12 Hysteresis loops of LSD (100cst,1000rpm,x-direction) Fig.5.13 Hysteresis loops of LSD (1000cst,1000rpm,x-direction) Fig.5.14 Hysteresis loops of LSD (3000cst, 1000rpm, x-direction) Fig.5.15 Hysteresis loops of LSD (without oil, 1000rpm, y-direction) Fig.5.16 Hysteresis loops of LSD (100cst,1000rpm,y-direction) Fig.5.17 Hysteresis loops of LSD (1000cst,1000rpm,y-direction) Fig.5.18 Hysteresis loops of LSD (3000cst,1000rpm,y-direction) Fig.5.19 Hysteresis loops of LSD (without oil,2000rpm,x-direction) Fig.5.20 Hysteresis loops of LSD (100cst,2000rpm,x-direction) Fig.5.21 Hysteresis loops of LSD (1000cst,2000rpm,x-direction) Fig.5.22 Hysteresis loops of LSD (3000cst,2000rpm,x-direction) Fig.5.23 Hysteresis loops of LSD (without oil,2000rpm,y-direction) Fig.5.24 Hysteresis loops of LSD (100cst,2000rpm,y-direction) Fig.5.25 Hysteresis loops of LSD (1000cst,2000rpm,y-direction) Fig.5.26 Hysteresis loops of LSD (3000cst,2000rpm,y-direction) Fig.5.27 Stiffnesss coefficients of prototype LSD (Type C) Fig.5.28 Damping coefficients of prototype LSD (Type C)

- Table 4.1 Specification of prototype LSD
- Table 4.2 Specification of test rig instruments

Α	: 0			[mm]		
$b_{o,}h_{o}$:			[mm]		
b	:			[mn	n]	
[C]	:					
C_{DR}, C_{DL}	:					
C_{f}	: フ	ŀ				
$C_{xx}, C_{xy}, C_{yx},$	C_{yy} :					
d _o	:				[n	1]
Ε	:	, Youn	ng	[N/m2, P	a]	
F_N	:	Ο		[N]		
F _s	:			[N]		
$\Delta F_x, \Delta F_y$:				가	[N]
i	:					
Ι	:	2	[m4]			
[K]	:					
K _s	:					
K_{xx}, K_{xy}, K_{yx}	K_{yy} :					
L_h	:					[m]
M(x)	:					[N · m]
n	:					
p_i	: i				[N/m2]	
P_i	:			[N]		
ΔS_i	:			[1	nm]	
t _i	: i			[mm]		

$(\varDelta V)_i$: i		[m3]
ΔV_f	:		[m3]
<i>∆</i> х, <i>∆</i> у	:	[mm]	
μ	:		
μ_o	:		
δ_i	:		[mm]
$\delta_{\it pre}$:		[mm]
ν	:	(Poisson's ratio)	
ϕ_i	:	i	[°]
η	:	[N · s/m2]	
ω	:	[rad/sec]	

A Study on Viscous Damping Effects in Leaf Spring Damper

Kim, Sang-Do

directed by Prof. Kim, Jong-Soo

Department of Mechanical Engineering Graduate School, Korea Maritime University

Abstract

Recently, a new lateral vibration damper using leaf springs and oil, named as a leaf spring damper (LSD), developed by Jei and Kim.[2] The major advantage of this novel damper is that the dynamic characteristics of the leaf spring damper can be easily controlled by the design of side clearance and leaf spring packs. Therefore, the leaf spring dampers can be useful for turbomacinery, high speed spindles, vehicle axles, etc. In additon, since the leaf spring damper can directly cooperate with rolling element bearings, it ultimately extends the usage of rolling element bearings by providing damping property.

The present paper have been investigated experimentally the dynamic characteristics of a lateral leaf spring damper with different side clearance and oil viscosity. Experiments were performed to investigated the effects of side clearance and oil viscosity on the damping of lateral leaf spring damper. The stiffness and damping coefficients are obtained from the displacements and the reaction forces generated by rotating the eccentric shaft. All dynamic coefficients are plotted with the excitation frequency which is adjusted by rotating speed of shaft. The test rig and two different leaf spring damper were manufactured to test the dynamic characteristics of the leaf spring damper.

1.1

가

가 (Leaf Spring Damper, LSD)가 Jei & Kim .[2]

.

•

,

•

,

가

•

,

1.2

,

.

가

[

Fig.2.2

•

,

(*Pi*) . (*Mi*) (2.1) .[9,10]

$$M_{1}(x) = -P_{1}(L_{1} - x) + P_{2}(L_{2} - x) + P_{2} < x - L_{2} >^{1} + \mu P_{2}(t_{1}/2 + \delta_{2})$$

$$-\mu P_{2}(t_{1}/2 + \delta_{2}) < x - L_{2} >^{0} - \mu P_{2}\delta_{1}(x) + \mu P_{2}\delta_{1}(x) < x - L_{2} >^{0}$$

$$M_{i}(x) = -P_{i}(L_{i} - x) + P_{i+1}(L_{i+1} - x) + P_{i+1} < x - L_{i+1} >^{1} + \mu P_{i}(t_{i}/2 - \delta_{i})$$

+ $\mu P_{i+1}(t_{i}/2 + \delta_{i+1}) - \mu P_{i+1}(t_{i}/2 + \delta_{i+1}) < x - L_{i+1} >^{0}$
+ $\mu (P_{i} - P_{i+1})\delta_{i}(x) + \mu P_{i+1}\delta_{i}(x) < x - L_{i+1} >^{0}$

÷

:

$$M_{n}(x) = -P_{n}(L_{n} - x) + \mu P_{n}(t_{n}/2 - \delta_{n}) + \mu P_{n}\delta_{n}(x)$$
(2.1)

$$^{n} = 0$$
 if $x < a$
 $^{n} = (x-a)^{n}$ if $x \ge a$ (2.2)

,

$$(EI)_{i} \frac{d^{2} \delta_{i}(x)}{dx^{2}} = -M_{i}(x)$$
(2.3)

•

가

•

(2.4) (2.5)

$$\delta_{i}(x) = \frac{P_{i}}{6(EI)_{i}} (3L_{i}x^{2} - x^{3}) - \frac{P_{i+1}}{6(EI)_{i}} (3L_{i+1}x^{2} - x^{3}) - \frac{P_{i+1}}{6(EI)_{i}} < x - L_{i+1} > 3$$

$$0 \le x \le L_i, i = 1, 2, \cdots, n - 1$$
 (2.4)

$$\delta_n(x) = \frac{P_n}{6(EI)_n} (3L_n x^2 - x^3)$$
(2.5)

•

$$\frac{P_{i-1}}{6(EI)_{i-1}} (3L_{i-1}L_i^2 - L_i^3) - \frac{P_iL_i^3}{3(EI)_{i-1}} = \frac{P_iL_i^3}{3(EI)_i} - \frac{P_{i+1}}{6(EI)_i} (3L_iL_{i+1}^2 - L_{i+1}^3)$$
(2.6)

,

•

(2.5)

$$\begin{bmatrix} d_2 & c_2 & 0 & 0 & 0 & \dots & 0 \\ a_3 & d_3 & c_3 & 0 & 0 & \dots & 0 \\ 0 & a_4 & d_4 & c_4 & 0 & \dots & 0 \\ 0 & 0 & a_4 & d_5 & c_5 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & a_{n-1} & d_{n-1} & c_{n-1} \\ 0 & 0 & 0 & \dots & 0 & a_n & d_n \end{bmatrix} \begin{bmatrix} \varphi_2 \\ \varphi_3 \\ \varphi_4 \\ \vdots \\ \vdots \\ \varphi_{n-1} \\ \varphi_n \end{bmatrix} = \begin{bmatrix} b_2 \\ b_3 \\ b_4 \\ \vdots \\ \vdots \\ b_{n-1} \\ b_n \end{bmatrix}$$
(2.7)

$$a_{i} = (3L_{i-1} - L_{i})L_{i}^{2}/L_{1}^{3}$$
$$b_{i} = \begin{cases} -a_{i} & i=2\\ 0 & i=3, 4, ..., n \end{cases}$$

$$c_{i} = \frac{(EI)_{i-1}}{(EI)_{i}} a_{i+1}$$

$$d_{i} = -2\left(\frac{L_{i}}{L_{1}}\right)^{3}\left(1 + \frac{(EI)_{i-1}}{(EI)_{i}}\right)$$

$$\varphi_{i} = \frac{P_{i}}{P_{1}}$$

$$k_{p} = \frac{3(EI)_{1}}{\xi(1-\nu^{2})L_{1}^{3}}$$
(2.8)

•

$$\xi = 1 - 0.5\varphi_2 \left(\frac{L_2}{L_1}\right)^2 \left\{3 - \left(\frac{L_2}{L_1}\right)\right\}$$
(2.9)

$$\nu$$
: (Poisson's ratio)

,

$$k_{s} = \frac{k_{p}}{(1 + a/L_{1})}$$
(2.10)

•

$$a = l_1 \qquad a = l_2$$

.[11]

•

•

-))) O-
 - , 가

2.2.1

Fig.2.4 . $\Delta x, \Delta y$ Fig.2.5 , $(\Delta V)_i$.

$$(\Delta V)_i = (\Delta V_s)_i + (\Delta V_f)_i - (\Delta V_f)_{i+1}$$
(2.11)

 ΔV_s

$$(\Delta V_s)_i = \frac{bd_o}{2} \{ (\sin \phi_{i+1} - \sin \phi_i) \Delta x + (\cos \phi_i - \cos \phi_{i+1}) \Delta y \}$$
(2.12)

do ,
$$\phi_i$$
 , b
, ϕ_i , ΔV_f

beam)
$$k_{s}$$
 (cantilever δ_{1}
 $\delta(x)$ (2.13) .

$$\delta(x) \qquad (2.13)$$

$$\delta(x) = \frac{1}{2L^3} (3Lx^2 - x^3)\delta_1$$

$$\Delta x, \Delta y$$
(2.13)

(2.14)

,

$$(\Delta V_f)_i = \frac{3bL}{8} (\cos \phi_i \Delta x + \sin \phi_i \Delta y)$$

$$(\Delta V_f)_{i+1} = \frac{3bL}{8} (\cos \phi_{i+1} \Delta x + \sin \phi_{i+1} \Delta y)$$

(2.14)

.

가

•

•

•

L

$$(\Delta V)_{i} = \left\{ \frac{bd_{o}}{2} (\sin \phi_{i+1} - \sin \phi_{i}) + \frac{3bL}{8} (\cos \phi_{i} - \cos \phi_{i+1}) \right\} \Delta x$$

$$(2.15)$$

$$+ \left\{ \frac{bd_{o}}{2} (\cos \phi_{i} - \cos \phi_{i+1}) + \frac{3bL}{8} (\sin \phi_{i} - \sin \phi_{i+1}) \right\} \Delta y$$

가

$$(Q_s)_i = C_{DR}(p_i - p_{i-1}) + C_{DL}(p_i - p_{i+1})$$
 (2.16)

$$C_{DR}, C_{DL}$$

$$(2.17) \qquad 7! \qquad .[13]$$

$$C_{D} = 2\left(\frac{\pi d_{h}^{4}}{142 \eta L_{h}}\right), \qquad d_{h} = \frac{2b_{o}h_{o}}{b_{o} + h_{o}}$$

$$(2.17)$$

(2.18)

2

$$(Q_s)_i = \frac{d(\Delta V)_i}{dt}$$
 (2.18)

,

$$p_{i-1} - 2p_i + p_{i+1} = \frac{3bL}{8C_D} \left\{ -\frac{4d_o}{3L} (\sin\phi_i - \sin\phi_{i+1}) + (\cos\phi_i - \cos\phi_{i+1}) \right\} \frac{d(\Delta x)}{dt} + \frac{3bL}{8C_D} \left\{ \frac{4d_o}{3L} (\cos\phi_i - \cos\phi_{i+1}) + (\sin\phi_i - \sin\phi_{i+1}) \right\} \frac{d(\Delta y)}{dt}$$

,

$$p_{i} \qquad i$$

$$(2.20) \qquad \qquad .$$

$$P = P_{0} + \Delta P$$

$$\Delta p = \left(\frac{\partial p}{\partial \dot{x}}\right) \frac{d\left(\Delta x\right)}{dt} + \left(\frac{\partial p}{\partial \dot{y}}\right) \frac{d\left(\Delta y\right)}{dt} = p_{x} \cdot \Delta \dot{x} + p_{y} \cdot \Delta \dot{y}$$
(2.20)

2.2.2 O-

.

.

.

O- 1 E

$$E = 4\mu_o F_N A \tag{2.21}$$

FN	O-	, A	, μ_o
		7 C_f	

$$C_{f} = \frac{4\mu_{o}F_{N}}{\pi\omega A}$$
(2.22)
,
(
)
(hysteresis damping)
 F_{s}
(2.22)

$$F_{s} = k_{s} \delta + j h_{d} \delta = k_{s} (1 + j\zeta) \delta$$
(2.23)

$$jh_d\delta$$
 $\zeta = h_d/k_s$

$$C_h = \frac{h_d}{\omega} = \frac{\zeta k_s}{\omega}$$
 (2.24)

•

•

.

ζ

.

(Dissipation energy, E_d)

$$E_{d} = 4 \mu_{s} P_{1} \varDelta s_{1} + \sum_{i=2}^{n} 4 \mu_{s} P_{i} (2 \varDelta s_{i})$$
(2.25)

n ,
$$\Delta s_i$$
 . Δs_i . Δs_i

(2.26)

 δ_{i}

$$\Delta s_{i} = \frac{3 \delta_{i} t_{i}}{2L_{i}}$$
(2.26)
$$t_{i}$$
(2.25)
(2.27) .

$$E_{d} = 6 \mu_{s} k_{s} (\delta_{1} + \delta_{pre}) \delta_{1} \left[\frac{t_{1}}{L_{1}} + 2 \sum_{i=2}^{n} \varphi_{i} \frac{\delta_{i}}{\delta_{1}} \frac{t_{i}}{L_{i}} \right]$$
(2.27)

(2.27)
$$\delta_{pre}$$
 (preload) . ξ (2.28) .

$$\zeta = \frac{-6\mu}{\pi} \left(1 + \frac{\delta_{pre}}{\delta_1} \right) \left[\frac{t_1}{L_1} + 2\sum_{i=2}^n \varphi_i \frac{\delta_i}{\delta_1} \frac{t_i}{L_i} \right]$$
(2.28)

Fig.2.4 (3.1)

•

,

,

.

$$F_{i} = k_{s}(1+j\eta)\cos\phi_{i}\Delta x + k_{s}(1+j\eta)\sin\phi_{i}\Delta y + \frac{3bL}{8}(p_{i-1}-p_{i})$$
(3.1)

.[15]

$$F_{x} = \sum_{i=1}^{N} \left\{ F_{i} \cos \phi_{i} + \frac{bd_{o}}{2} \int_{\phi_{i}}^{\phi_{i+1}} p_{i} \cos \theta d\theta \right\}$$

$$= K_{xx} \Delta x + K_{xy} \Delta y + C_{xx} \Delta \dot{x} + C_{xy} \Delta \dot{y}$$
(3.2)

$$F_{y} = \sum_{i=1}^{N} \left\{ F_{i} \sin \phi_{i} + \frac{bd_{o}}{2} \int_{\phi_{i}}^{\phi_{i+1}} p_{i} \sin \theta d\theta \right\}$$

$$= K_{yx} \Delta x + K_{yy} \Delta y + C_{yx} \Delta \dot{x} + C_{yy} \Delta \dot{y}$$
 (3.3)

.

(3.1)

$$K_{xx} = k_s \sum_{i=1}^{N} \cos^2 \phi_i$$

$$K_{xy} = k_s \sum_{i=1}^{N} \sin \phi_i \cos \phi_i$$

$$K_{yx} = k_s \sum_{i=1}^{N} \cos \phi_i \sin \phi_i$$

$$K_{yy} = k_s \sum_{i=1}^{N} \sin^2 \phi_i$$

(3.4)

:

$$C_{yy} = C_{f} + \frac{\zeta k_{s}}{\omega} \sum_{i=1}^{N} \sin^{2} \phi_{i}$$

$$+ \lambda \sum_{i=1}^{N} \left\{ (\overline{p}_{x,i-1} - \overline{p}_{y,i}) \sin \phi_{i} - \frac{4d_{o}}{3L} \overline{p}_{y,i} (\cos \phi_{i} - \cos \phi_{i+1}) \right\}$$

$$C_{xx} = C_f + \frac{\zeta k_s}{\omega} \sum_{i=1}^N \cos^2 \phi_i$$

+ $\lambda \sum_{i=1}^N \left\{ (\overline{p}_{x,i-1}, \overline{p}_{x,i}) \cos \phi_i + \frac{4d_o}{3L} \overline{p}_{x,i} (\sin \phi_i - \sin \phi_{i+1}) \right\}$

$$C_{xy} = \frac{\zeta k_s}{\omega} \sum_{i=1}^{N} \sin \phi_i \cos \phi_i$$

$$+ \lambda \sum_{i=1}^{N} \left\{ (\overline{p}_{y,i-1}, -\overline{p}_{y,i}) \cos \phi_i + \frac{4d_o}{3L} \overline{p}_{y,i} (\sin \phi_i - \sin \phi_{i+1}) \right\}$$
(3.5)

$$C_{yx} = \frac{\zeta k_s}{\omega} \sum_{i=1}^{N} \cos \phi_i \sin \phi_i + \lambda \sum_{i=1}^{N} \left\{ (\frac{p}{p_{x,i-1}} - \frac{p}{p_{x,i}}) \sin \phi_i - \frac{4d_o}{3L} \frac{p}{p_{x,i}} (\cos \phi_i - \cos \phi_{i+1}) \right\}$$

λ

:

$$\lambda = \frac{9b^2L^2}{64C_D} = \frac{639\eta L_h b^2 L^2}{64\pi d_h^4}$$
(3.6)

$$\overline{p}_{x} \cdot \overline{p}_{y} \cdot = \frac{8C_{D}}{3bL} p_{x} \cdot, p_{y} \cdot$$

k _s가

,

(3.4)
$$K_{xy} = K_{yx} = 0$$

 $K_{xx} = K_{yy} = 0.5Nk_s$ (is otropic) .

. ...

가

,

•

.

0-

0-. •

Fig. 2.1 Fig. 4.1 Fig. 4.2 . Fig. 4.3 , CNC . CNC 가 , Fig. 4.4 가 #6911 . Fig. 4.1 6 , . , 가 가 (Type A : 0.25mm, Type B : 0.10mm) . Table 4.1 • Fig. 가 4.5 . 50 µ m . 가 가 . .

(eddy current type displacement trasducer)

(load cell)				(Amplifier)
		A/D		
	가			
				Table 4.2
	가		가	(cross couple term)
	가			

,

4.6 .

가

.

4.2

7남 , Fourier .[8] (4.1)

가 .[7,8]

$$\left\{ \begin{array}{c} \Delta F_{x} \\ \Delta F_{y} \end{array} \right\} = \left[K \right] \left\{ \begin{array}{c} \Delta x \\ \Delta y \end{array} \right\} + \left[C \right] \left\{ \begin{array}{c} \Delta \dot{x} \\ \Delta \dot{y} \end{array} \right\} + \left[m \right] \left\{ \begin{array}{c} \Delta \ddot{x} \\ \Delta \dot{y} \end{array} \right\}$$
(4. 1)

•

[K] [C]

•

가 (4.2)

,

Fig.

$$\Delta F_{x} = A \sin(\omega_{x}t - \alpha_{1})$$

$$\Delta F_{y} = B \sin(\omega_{y}t - \alpha_{2})$$
(4.2)

(4.3) .

$$\Delta x = a_1 \cos \omega_x t + a_2 \sin \omega_x t + a_3 \cos \omega_y t + a_4 \sin \omega_y t$$

$$\Delta y = b_1 \cos \omega_x t + b_2 \sin \omega_x t \ b_1 \cos \omega_y t + b_2 \sin \omega_y t$$
(4.3)
$$7 + 7$$

$$\omega_x = \omega_y = \omega$$
 (4.3) (4.1)
(4.4),(4.5) .

$$\Delta F_x = [m](-a_1\omega^2\cos\omega t - a_2\omega^2\sin\omega t) + [C](-a_1\omega\sin\omega t + a_2\omega\cos\omega t) + [K](a_1\cos\omega t + a_2\sin\omega t)$$

$$= (-a_1\omega^2[m] + a_2\omega[C] + a_1[K])\cos \omega t + (-a_2\omega^2[m] - a_1\omega[C] + a_2[K])\sin \omega t$$
(4.4)

$$\Delta F_{y} = [m](-b_{1}\omega^{2}\cos\omega t - b_{2}\omega^{2}\sin\omega t) + [C](-b_{1}\omega\sin\omega t + b_{2}\omega\cos\omega t)$$

$$+ [K](b_{1}\cos\omega t + b_{2}\sin\omega t)$$

$$= (-b_{1}\omega^{2}[m] + b_{2}\omega[C] + b_{1}[K])\cos\omega t$$

$$+ (-b_{2}\omega^{2}[m] - b_{1}\omega[C] + b_{2}[K])\sin\omega t$$
(4.5)

(4.3)
$$\cos \omega t$$
, $\sin \omega t$ t
(4.6),(4.7)

 a_1, a_2, b_1, b_2 7 .

$$\int_0^\tau \cos \omega t \cdot \Delta x \, dt = a_1 \int_0^\tau \cos^2 \omega t \, dt + a_1 \int_0^\tau \cos \omega t \, \sin \omega t \, dt$$
$$= a_1 \int_0^\tau \cos^2 \omega t \, dt = -\frac{\tau}{2} a_1$$

$$a_{1=} -\frac{2}{\tau} \int_{0}^{\tau} \Delta x \cos \omega t \, dt$$

$$a_{2=} -\frac{2}{\tau} \int_{0}^{\tau} \Delta x \sin \omega t \, dt$$
(4.6)

$$b_{1=} -\frac{2}{\tau} \int_{0}^{\tau} \Delta y \cos \omega t \, dt$$

$$b_{2=} -\frac{2}{\tau} \int_{0}^{\tau} \Delta y \sin \omega t \, dt$$
(4.7)

 $\{a\}, \{b\}$

$$\{a\} = \begin{cases} a_1 \\ a_2 \end{cases} = \frac{2}{\tau} \begin{cases} \int_0^{\tau} \Delta x \cos \omega t \, dt \\ \int_0^{\tau} \Delta x \sin \omega t \, dt \end{cases}$$
(4.6a)

$$\{b\} = \begin{cases} b_1 \\ b_2 \end{cases} = -\frac{2}{\tau} \begin{cases} \int_0^{\tau} \Delta y \cos \omega t \, dt \\ \int_0^{\tau} \Delta y \sin \omega t \, dt \end{cases}$$
(4.7a)

$$(4.3) (4.6),(4.7) (4.4),(4.5) (4.8),(4.9),(4.10)(4.11) .$$

$$\int_0^{\tau} \Delta F_x \cos \omega t \, dt = \left(-a_1 \omega^2 [m] + a_2 \omega [C] + a_1 [K] \right) \int_0^{\tau} \cos^2 \omega t \, dt$$
$$+ \left(-a_2 \omega^2 [m] - a_1 \omega [c] + a_2 [K] \right) \int_0^{\tau} \cos \omega t \, \sin \omega t \, dt$$

$$- a_1 \omega^2[m] + a_2 \omega[C] + a_2[K] = -\frac{2}{\tau} \int_0^{\tau} \Delta F_x \cos \omega t \, dt$$
 (4.8)

$$- a_2 \omega^2 [m] - a_1 \omega [C] + a_2 [K] = \frac{2}{\tau} \int_0^\tau \Delta F_x \sin \omega t \, dt$$
 (4.9)

$$- b_1 \omega^2[m] - b_2 \omega[C] + b_1[K] = \frac{2}{\tau} \int_0^\tau \Delta F_y \cos \omega t \, dt$$
 (4.10)

$$- b_2 \omega^2[m] - b_1 \omega[C] + b_2[K] = \frac{2}{\tau} \int_0^{\tau} \Delta F_y \sin \omega t \, dt$$
 (4.11)

$$a_1, a_2, b_1, b_2, [m]$$
, [C], [K]
(4.8),(4.9),(4.10),(4.11)
[C], [K]

$$\begin{bmatrix} K_{xx} \\ C_{xx} \end{bmatrix} = \begin{bmatrix} U \end{bmatrix}^{-1} \begin{bmatrix} u_1 \end{bmatrix}, \begin{bmatrix} K_{yy} \\ C_{yy} \end{bmatrix} = \begin{bmatrix} U \end{bmatrix}^{-1} \begin{bmatrix} u_2 \end{bmatrix}$$
(4. 12)

$$\begin{bmatrix} U \end{bmatrix} = \begin{bmatrix} a_1 & b_1 & a_2\omega & b_2\omega \\ a_2 & b_2 & -a_1\omega & -b_1\omega \end{bmatrix}$$
(4.13)

$$\{u_1\} = \{c\} + m\{e\}$$

$$\{u_2\} = \{d\} + m\{f\}$$
(4.14)

$$\{c\}, \{d\} \{e\}, \{f\} (4.15), (4.16), (4.17), (4.18)$$
.

$$\{c\} = \begin{cases} c_1 \\ c_2 \end{cases} = \frac{2}{\tau} \left\{ \int_0^{\tau} \Delta F_x \cos \omega t \, dt \right\}$$
(4.15)

$$\{d\} = \begin{cases} d_1 \\ d_2 \end{cases} = \frac{2}{\tau} \left\{ \int_0^{\tau} \Delta F_y \cos \omega t \, dt, \\ \int_0^{\tau} \Delta F_y \sin \omega t \, dt \right\}$$
(4.16)

$$\{e\} = \begin{cases} e_1 \\ e_2 \end{cases} = \begin{cases} a_1 \omega^2 \\ a_2 \omega^2 \end{cases}$$
(4. 17)

$$\{f\} = \begin{cases} f_1 \\ f_2 \end{cases} = \begin{cases} b_1 \omega^2 \\ b_2 \omega^2 \end{cases}$$
(4. 18)

 $(4.6a), (4.7a), (4.15), (4.16), (4.17), (4.18) \qquad \{a\}, \{b\}, \{c\}, \{d\}, \{e\}, \{f\}$ fourier . $\{a\}, \{b\}, \{e\}, \{f\} \qquad , \ \{c\}, \{d\} \qquad \text{Load cell}$ FFT .

$$K_{xx} = \frac{1}{(a_1^2 - a_2^2)\omega} [a_1\omega(c_1 + a_1\omega^2 m) - a_2\omega(c_2 + a_2m\omega)]$$
(4.19)

$$K_{yy} = \frac{1}{(b_1^2 - b_2^2)\omega} [b_1\omega(d_1 + b_1\omega^2 m) - b_2\omega(d_2 + b_2m\omega)]$$
(4.20)

$$C_{xx} = \frac{1}{(a_1^2 - a_2^2)\omega} [-a_2(c_1 + a_1m\omega^2) + a_1\omega(c_2 + a_2m\omega)]$$
 (4.21)

$$C_{yy} = \frac{1}{(b_1^2 - b_2^2)\omega} [-b_2(d_1 + b_1 m \omega^2) + b_1 \omega (d_2 + b_2 m \omega)]$$
 (4.22)

Table 4.1		가	Туре
A Type B			Fig.
5.1 Fig. 5.2			50
μm		200N 300N	50%
가	. 가	Type B가 Type	А
가		가	

•

(hysteres is	loop)	Fig. 5.3	Fig. 5.8
가			

.

•

가

가 • (cavity) • 가 가 가 500rpm Type B Fig.5.5 Fig.5.7 가 . Type B 가 가 가 Fig.5.6 Fig.5.8 . 가 가 3000rpm Type B 가 가 가 가 • 가 가 가 • • . Type A Type B Fig.5.9 • 가 • 가 . 가 가 . 가 . Type A Type B Fig.5.10 . Type A , 가 가 가 Type B 가 가 •

가

•

.

가

,

5.2

•

가 Table 4.1 Type C • 7 100cst, 1000cst, 3000cst 가 Fig. 5.11 Fig. 5. 26 가 . 가 • 100cst Fig. 5.12 Fig. 5.13 1000cst 가 가 가 Fig. 5.13 Fig. . 5.17 . 가 Fig. 5.13 Fig.

가 가 가

.

. .

,

•

•

1. 가 , 가 가 .

2. 7ł .

3. 가 4. 가 가, 가.

5. 7ł .

6. 가

7.

- [1] , , , " ", , 1999
- [2] Jei, Y.-G., Kim, J.-S., Hong, S.-W., and Jung, S.-Y., "A New Lateral Vibration Damper Using Leaf Springs.", ASME Trans. J. of Vib. and Acoustics, Vol.121, No2, 1999
- [3] , , , " ", , 1999 [4] , , , , , " ", , , , , " ", , , , 18 , 1 , 1994, pp11-22.
- [5] , , , , , " ", , 18 , 1 , 1994, pp23-31.
- [6] Kostrsewsky, G. J. and Flack, R. D., "Accuracy Evaluation of Experimentally Derived Dynamic Coefficients of Fluid Film Bearings Part : Development of Method", STLE Trans., Vol.33, 1990, pp.105-114.
- [7] Ha, H.-C., and Yang, S. H., "Excitation Frequency Effects on the Stiffness and Damping Coefficients of a Five-Pad Tilting Pad Journal Bearing", ASME Trans., J. of Tribology, 98-TRIB-44.
- [8] , , , , "가 가 ", , 14 , 1 , 1998, pp14-22 [9] , " , , , , . 1997
- [10] Spatts, M.E., Design of Machine Elements, 6th edition, Prentice-Hall, 1985

- [11] Crandall, S. H., Dahl, N. C., and Lardner, T. J., "An Introduction to the Mechanics of Solids, 2nd edition, McGraw-Hill, 1978
- [12] Fung, Y. C., "Foundations of Solid Mechanics", Prentice-Hall, Toronto, 1965
- [13] Schlichting, H., "Boundary-Layer Theory", 7th edition, McGraw-Hill, 1965
- [14] , , , " ",

, 12 , 13 , 1995, pp175-181

- [15] James, M.L., Smith, G.M., Wolford, J.C., and Whaley, P.W., "Vibration of Mecanical and Structural Systems, Harper & Row,
- [16] Burrows, C.R. and Sahinkaya, M.N., "Frequency Domain Estimation of Linearized Oil Film Coefficients", J. of Tribology, Trans. of ASME, Vol. 104, 1982, pp 210-215
- [17] Nicholas, J.C., Gunter, E.J., and Allaire, P.E., "Effect of residual shaft vow on unbalance response and balancing of a single mass flexible rotor: part -Unbalance response," Trans. ASME, Journal of Engineering for Power, Vol 98, No. 2, 1976, pp171-181

Fig.2.1 A sectional view of Leaf Spring Damper

Fig.2.2 A free body diagram for a Leaf Spring Damper pack

Fig.2.3 Detail of clamping structure of Leaf Spring pack

Fig.2.4 Coordinates system of Leaf Spring Damper

Fig.2.5 Schematic diagram for volumetric change of oil cabin by moving inner ring

Fgi.4.1 A prototype Leaf Spring Damper

Fig.4.2 Photography of Leaf Spring Damper (Type C)

Fig.4.3 A same model of CNC machine for application of LSD

Fig.4.4 Attachment configuration of LSD to CNC machine

Fig.4.6 Photography of experiment system

Fig.5.1 Illustration of displacements and reaction forces (Type A, 500rpm)

Fig.5.2 Illustration of displacements and reaction forces (Type B, 500rpm)

Fig.5.3 Hysteresis loops of LSD (without oil, 500rpm)

Fig.5.4 Hysteresis loops of LSD (without oil, 3000rpm)

Fig.5.5 Hysteresis loops of LSD (Type A, 500rpm)

Fig.5.6 Hysteresis loops of LSD (Type A, 3000rpm)

Fig.5.7 Hysteresis loops of LSD (Type B, 500rpm)

Fig.5.8 Hysteresis loops of LSD (Type B, 1000rpm)

Fig.5.9 Stiffness coefficients of prototype LSD

Fig.5.10 Damping coefficients of prototype LSD

Fig.5.11 Hysteresis loops of LSD (without oil, 1000 rpm)

Fig.5.12 Hysteresis bops of LSD (100 cst, 1000 rpm)

Fig.5.13 Hysteresis bops of LSD (1000 cst, 1000 rpm)

Fig.5.14 Hysteresis bops of LSD (3000 cst, 1000 pm)

(Y-Direction)

Fig. 5.15 Hysteresis loops of LSD (without oil, 1000 rpm)

Fig.5.16 Hysteresis bops of LSD (100 cst, 1000 rpm)

Fig.5.17 Hysteresis bops of LSD (1000 cst, 1000 rpm)

Fig.5.18 Hysteresis bops of LSD (3000 cst, 1000 rpm)

Fig. 5.19 Hysteresis bops of LSD (without oil, 2000 ppm)

Fig.5.20 Hysteresis bops of LSD (100 cst, 2000 rpm)

Fig.5.21 Hysteresis bops of LSD (1000 cst, 2000 rpm)

Fig.5.22 Hysteresis bops of LSD (3000 cst, 2000 rpm)

Fig. 5.23 Hysteresis loops of LSD (without oil, 2000 rpm)

Fig. 5.24 Hysteresis bops of LSD (100 cst, 2000 pm)

Fig. 5.25 Hysteresis bops of LSD (1000 cst, 2000 rpm)

Fig.5.26 Hysteresis bops of LSD (3000 cst, 2000 pm)

Fig.5.27 Stiffness coefficients of prototype LSD (Type C)

Fig.5.28 Damping coefficients of prototype LSD (Type C)

ite m	Type A	Type B	Тур	e C
Leaf Spring [mm]				
L1 × t1	18.5 × 1.0	18.5 × 1.0	38 ×	1.35
L2×t2	18.5 × 1.0	18.5 × 1.0	34 ×	1.35
L3×t3			25 ×	1.35
width, b1	13.5	13.8	14	4.8
Number of Leaf Spring pack, N	6			6
Preload of Leaf Spring, pre[mm]	0.1		0.	25
Oil passage[mm] width, b0	5.5		2	.4
clearance[mm], h0	0.25 0.10		0	.9
Inner ring[mm]				
inner dia, di	inner dia, di		55	5.0
outer dia, d0	92.0		71	.0
width, b	14.0		15	5.0
Working oil	KF96-1000		KF96-100	KF96-3000
viscosity[cst]	1,000(@25)		100(@25)	3,000(@25)
density[kg/m3]	970(@25)		965(@25)	970(@25)

Table 4.1 Specification of prototype LSD

Instrument	Specifications
Gap sensor model : VS-120 maker : ono sokki co.	eddy current type range : 0.05 - 2.05mm linearity : 0.4% F.S
Gap detector model : VT-120 maker : Ono sokki co.	dis p, output : 0 - 5V amp. output : 0 -5V response freq. : 10Khz monitor : digital display 0 -100%
Load cell model : SB-200L maker : Cas co.	rated load : 200Kgf rated output : 2mV/V ±0.1% excitation : 10V
Signal amplifier model : 2310 maker : Measurement group Inc	input : strain gage (50 - 1000 Ohms) output : ±10V filter : 10Hz - 10Khz freq. response : 25Khz excitation : DC 0.5 - 15V
Strain amplifier model : DPM-611B maker : Kyowa electronic inst	input : strain gage (60 - 1000 Ohms) output : ±5V calibration : ±1 to ± 99999ue filter : 10Hz - 1Khz freq. response : 5Khz excitation : AC 2V, 0.5V
Mo to r	power : 3.7 Kw max. rpm : 4000 rpm input : AC 180 -220 V

Table 4.2 Specification of test rig instruments