

LNG

A study for the Improvement of Thermodynamic Cycle of LNG Re-liquefaction System

2009 2

本 論文 宋永旭 工學碩士 學位論文 認准

- ()
 - ()

2008 12 10

Abstract

Abstract

In recent years, there has been a significant increase in the level of interest on environment friendly and economically viable solutions for the transport of Liquefied Natural Gas (LNG).

It has passed more than 40 years since the first commercial export of LNG in the world. Utilization of LNG has been rapidly spreading in recent years owing to the growing energy needs of worldwide in the world market.

The growth of traded LNG volume is the highest of all fuels thanks to the environment-friendly characteristics of natural gas and the transport ability of LNG.

LNG carriers have, up to 2006, mainly been driven by steam turbines. The Boil-Off Gas from the LNG cargo has so far been used as fuel. This is a costly solution that requires special skills during construction and operation. Alternative propulsion systems offer far better fuel economical efficiency than steam turbines. Instead of previous practice using Boil-Off Gas as fuel, the Re-liquefaction system establishes a solution to liquefy the Boil-Off Gas and return the LNG back to the cargo tanks. This Re-liquefaction of Boil-Off Gases on LNG carriers results in increased cargo deliveries and allows owners and operators to choose the most optimum propulsion system.

The design of the LNG Re-liquefaction plant has been performed based on the nominal BOR of 0.15 % of cargo capacity per day for the GTT and Moss insulation systems LNG carriers.

The Re-liquefaction system is basically made of two parts which is BOG cycle and Nitrogen cycle.

The Re-liquefaction process is carried out by condensation of BOG at a slightly elevated pressure of 4.5 bar against nitrogen gas which is to be cooled into a three-stage Brayton cycle. BOG is removed from the cargo tanks by means of a two stage centrifugal compressor, which is similar to conventional LD Compressors. The BOG is cooled and condensed to LNG in a Cryogenic heat exchanger (cold box). Non-condensable items, mainly nitrogen, are removed in a separator vessel. From the separator, the LNG is returned to the cargo tanks by the differential pressure in the system. The cryogenic temperature inside the Cold Box is produced by means of a nitrogen compression-expansion cycle.

In this study, thermodynamic cycle analysis has been performed based on two type of LNG Re-liquefaction system which was designed and adopted for the Q-Flex(220,000m³) and Q-Max(266,000m³) LNG carrier under construction at Korea ship yards and variable key factor was simulated to compare COP, power and nitrogen consumption of each Re-liquefaction system cycle.

According to the result of this study, there is no notable difference in respect of COP and performance of Re-liquefaction system at the view point of thermodynamic cycle, moreover design and operation is to be considered to avoid liquid formation at BOG Compressor in case of installation of Intercooler between 2nd stage Compressor.

For the development of high performance Re-liquefaction plant, it is essential to develop high efficiency compressor and turbo Expander and high performance heat exchanger is important factor to reduce power consumption and to increase COP and also effort to reduce cooling water temperature to be considered for design and operation of Re-liquefaction plant.

ADJ	: Adjust controller
BOG	: Boil Off Gas
COMP	: (Compressor)
COP	:
Cold Box	: LNG 3 (Heat exchanger)
CW	: Cooling Water exchanger
е	: Expander
EXP	: (Expander)
f	: (kg/h)
f	: BOG (kg/h)
G	: 가 (Vapor)
h	: (kJ/kg)
L	: 가 (Liquid)
MIX	: Process mixer
p	: (kPa)
Q _n	: Cooling energy(kW)
qL	: (kW)
S	: (kJ/kg - C)
SG	: Specific Gravity
t	: ()
TEE	: Process branch
UA	: Overall Heat Transfer coefficient.(kJ/C-h)

Wc _n	: Compressor	· (kW)
W_i	: 가	(kW)
W_t	:	(kW)
We	: Expander	(kW)

: BOG (kg_{BOG}/kg_N)

1

1.1 가 가 가, 가,가 가, 가, 가 가 (가 가 $(C_n H_{2n+2})$ 가 . 가 (Liquefied Natural Gas, LNG) 가 Processes , , (CH_4) • 가 1950 , 2 RITIME 가 (Oil Major) 가 가 가 1940 .

2 가 가 가

1845 "Faraday" 가 (CH4) (-161.5) . /

가			가	(LNG,	Liquefied	Natural
Gas)				•		
			가		(Plant)
, 3.5% Nicke	el				가	
			가		가	
		가			가	
					1954	
(Constock)社	LN	IG Ba	rge "N	lethane(5,000m³) " วี	가
			LNG			
					(防熱	才,Balsa
)						3
1958		State of the second	WIRE		(Methane
Pioneer)가		1945	1		(Louisiana	ı)
(Mississippi River)	94 8	"	Trunklin	e LNG Ter	minal"
5,000㎡ 가					22	
1959	2	20			(Thames	River)가
(Canvey)					
가			.(10)(1	1)(12)		

Fig. 1.1 Refining process of LNG⁽¹¹⁾

가

.

가

가

		,	150~250Bar	
	가 ,	, CNG(Compres	sed Natural Gas)	,
가	1	- 16	2	
1			1/600	
uefied N	Natural Ga	s)가 .		
LNG		25n	nbarG	
	- 160			
		가		
		(Boiling	point)	가
. 7	ŀ	Table 1.1		
	가	0// 8 ^t Cl	90~99%	
	(C ₂ H ₆)), (C ₃ H ₈)	(HC)	
(N ₂)	,		
	가 uefied N LNG	가 1 uefied Natural Ga LNG - 160 · 가 가 (C ₂ H ₆) (N ₂)	7 , CNG(Compress 7 1 -163 uefied Natural Gas)7 LNG 25m -160 7 1 7 1 7 $(C_2H_6), (C_3H_8)$ (N_2) ,	, $150-250Bar$ 7 , $CNG(Compressed Natural Gas)$ 7 1 -162 1/600 uefied Natural Gas)7 LNG 25mbarG -160 7 (Boiling point) . 7 Table 1.1 7 , $90-99\%$ (C_2H_6), (C_3H_8) (HC) (N_2) ,

	Methane CH₄	Ethan C₂H ₆	Propane C ₃ H ₈	Butane C₄H ₁₀	Pentane C ₅ H ₁₂	Nitrogen N ₂
Arun	89.33	7.14	2.22	1.17	0.01	0.08
Arzew	88.0	7.95	2.37	1.05	0.02	0.35
bintulu	91.23	4.3	2.95	1.4	0	0.12
Badak	91.09	5.51	2.48	0.88	0	0.03
Bonny	90.4	5.2	2.8	1.5	0.02	0.07
Das Island	84.83	13.39	1.34	0.28	0	0.17
Egypt	96.1	2.9	0.57	0.40	0.006	0.01
Equitorial Guinea	82.1	3.9	0.03	0	0.01	0
Lumut	89.4	6.3	2.8	1.3	0.05	0.05
Marsa el Braga	70	15	10	3.5	0.6	0.9
Point Fortin	96.2	3.26	0.42	0.07	0.01	0.08
Ras Laffan	90.1	6.47	2.27	0.6	0.03	0.25
Withnell	89.02	7.33	2.56	1.03	0	0.06

Table1.1 Typical composition of LNG

Nitrogen Methane Ethan Propane **Butane** Pentane CH₄ C_2H_6 C₃H₈ C_4H_{10} C_5H_{12} N₂ Molecular 16.042 30.068 44.096 58.120 72.150 28.016 Weight Boiling Point -161.4 -88.6 -42.1 -0.5 36.1 - 195.8 @ 1barA() Liquid density 426 544.1 580.7 601.8 610.2 808.6 $@ BP(kg/m^3)$ Vapour SG @15 and 0.553 1.04 1.55 2.00 2.49 0.97 1barA Gas Volume/Liquid 431 311 619 222 694 205 Ratio @ BP 1barA Flamable Non-flam 3~12.4 limits in Air 5~15 3.1~._._ 1.8~8.5 ر. J mable by volume(%) n:365 Auto-ignition 595 510 468 Temp() i:500 Gross Heating n:49,520 n:49,010 Value @15 50,360 55,550 51,870 i:49404 i:48944 (kJ/kg) Vaporsation heat at BP 510.4 489.9 426.2 385.2 357.5 199.3 (kJ/kg)

Table	1.2	Properties	of	typical	LNG
-------	-----	------------	----	---------	-----

1.2 LNG 2000 LNG 가 가 LNG , 3 LNG LNG - 163 1.2mm SUS316L Corrugate GTT MARK-III Type , 36% Nickel (INVAR) GTT No.96-2 Type . MOSS SPB LNG LNG BOG LNG . 가 가 . DF(Duel BOG Feul: HFO or MDO + BOG) DF - EL() Slow Diesel (Twin screw) BOG ,

LNG

Fig. 1.2 Fig. 1.3 .

Fig. 1.3 Propulsion type of LNGC

Slow Diesel

a) Steam Turbine

b) DF-EL

c) Slow Diesel

e) Gas Turbine

Fig. 1.4 Concept of LNG propulsion system

	BOG			
		LNG	i	,
	LNG		Slow Die	sel
			LNG	LNG
	LNG			
LNG		:	2003	
가		, 2008	3	
				LNG
	LNG	216K	Q - Flex , 260K	Q - Max

LNG

Fig. 1.5 Fig. 1.9

•

LNG

LNG

Fig. 1.5 Worldwide market trends of LNGC (Dec.2008).

Fig. 1.6 Cargo Containment Type of LNGC in service

Fig 1.7 Cargo containment type of LNGC under construction

Fig. 1.9 Propulsion type of LNGC under construction.

Fig. 2.1 Concept of LNG Re - liquefaction system.

LNG

•

3 LNG

3.1

•

(Pressure drop)

1) N₂(97%) O₂(3%) LNG (N₂ Generator)

2) BOG

.

Table 3.1 LNG composition for base calculation

. ,

,

Compositic	Case(Mole%)
Nitrogen	0.3242
Methane	93.1563
Ethane	6.2409
Propane	0.1758
Butane	0.0066
Pentanes & heavier	0.0962

3) 1 7 /14.0bar - 38.

•

9

80%

* Adiabatic efficiency = 80.00%

Fig 3.2 Configuration of Compressor & Expander

3.2 LNG 3.2.1 Α Н (Brayton) LNG BOG . N2 N_2 Compressor 3 BOG F.W cooler 3 . 1 - 163 Cold box BOG 가 LNG . 3 1,2 , 3,4 (Compander) N_2 . . NITIME BOG LNG

, Cold Box

(Precooler) 2 BOG

Box

LNG

Fig. 3.1 Table 3.1

Cold

.

- 160

4.5bar

Fig. 3.3 Re - liquefaction system of Hamworthy (Moss RS)

	Power Consumption(kW)
COMP1(W _{c1})	2,104
COMP2(W _{c2})	2,055
COMP3(W _{c3})	2,056
EXP1(W _e)	- 1,081
BOG 1 st (W _{c4})	145
BOG 2 nd (W _{c5})	145

Table 3.2 Power consumption

COP

$$COP = \frac{\pi \text{ 온에서 뽑아낸 열량}}{\text{ 가해진 일량}}$$
$$= \frac{q_{abstracted}}{W_i}$$
$$= \frac{q_L}{W_c - W_e}$$
(3.1)

*q*_L 3

Cold Box BOG가 LNG

$$q_L = q_{G4} - q_{L1} = 1,371 \text{ kW}$$
(3.2)

•

Wc = Wc1 + Wc2 + Wc3 = 6,215 kW(3.3) $We = -1,081 \ kW$ COP 0.2670 . LNG 가 BOG N_2 () BOG MARITIME (Wt) • BOG/N_2 의 질량유량비 (λ) $= \frac{BOG Flow}{N2 Flow} = \frac{f'}{f}$ (3.4) $= 0.0511 (kg/h_{BOG})/(kg/h_{N\!2}) \times 100$ = 5.11%(3.5)W $W \perp W \perp W \perp W$ \mathbf{W} TT7 1

•

$$w_t = w_1 + w_2 + w_3 + w_4 + w_5 - w_e$$

$$= 5,424kW$$
(3.5)

가

3.2.2	В		
C LNG	н		Brayton
	, 3 C	Cold Box	
	Counter Curr	ent Exchange	er, De-superheater
BOG Conde	enser		3
Thermal stress			
N_2	3	가	Counter Current
Exchanger	1		
BOG Condenser	BOG		
	De - superheater	(Intercooler)
BOG	111100	BOG BO	OG
, Γ)e - superheater E	BOG Condense	er
. BOG	9 1945 0/ 91 Q	Interc	ooler
	2		
	BC	DG	BOG
		Fig. 3.2	Table 3.2 .

Fig. 3.4 Re - liquefaction system of Cryostar(Eco - rel)

Table 3.3 Power consumption

	Power Consumption(kW)
COMP1 (Wc1)	2,108
COMP2 (Wc2)	2,059
COMP3 (Wc3)	2,060
EXP1 (We)	- 1,067
BOG 1 st (Wc4)	153.9
BOG 2 nd (Wc5)	118.7

가

COP

$$COP = \frac{\Lambda \& \text{old} \land \overset{\text{u}}{\text{s}} \circ \overset{\text{u}}{\text{s}} \stackrel{\text{d}}{\text{s}} \overset{\text{d}}{\text{s}} \overset{\text{d}}} \overset{\text{d}}{\text{s}} \overset{\text{d}}} \overset$$

 q_L ?IntercoolerDe - superheaterBOG Condenser.

$$q_{L} = (q_{G3} - q_{G4}) + (q_{G5} - q_{G6}) + (q_{G6} - q_{L1})$$
(3.7)

$$= 1,353 \text{ kW}$$

$$W_{c} , W_{e}$$

$$W_{c} , W_{e}$$

$$W_{c} = Wc1 + Wc2 + Wc3 = 6,227 \text{ kW} (3.8)$$

$$We = 1,067 \text{ kW}$$

$$COP \quad 0.2622 .$$

$$7 \text{ BOG } N_{2} \text{ BOG } N_{2}$$

$$() \text{ BOG } (W)$$

$$BOG/N_{2} \text{ Plate here here} = \frac{f'}{f} (3.9)$$

$$= \frac{BOG Flow}{N_{2} Flow} = \frac{f'}{f} (3.9)$$

$$= 0.0510(kg/h_{BOG})/(kg/h_{N_{2}}) \times 100$$

$$= 5.10\%$$

$$W_{t} = W_{1} + W_{2} + W_{3} + W_{4} + W_{5} - W_{e} (3.10)$$

$$= 5,432.6 \, k W$$

H C

Tal	ble	3.	4
			-

.

,

		Туре А	Туре А
1	СОР	0.2670	0.2622
2	(%)	5.11	5.10
3	\mathcal{W}_{t} (kW)	5,424	5,433

Table 3.4 Comparison table (Type A & B)

, Table 3.4

•

4 LNG

4.1

4.1.1 H (A)

Fig 4.1 Re-liquefaction system (Type A)

Fig. 4.1	Н					
BOG	- 120 ,	110kPa	가		, P	recooler
450 kPa		, BOG		2		
	Compander					
				95		,
Cooler		40			. Col	d box
	- 159.5				1	N ₂ Mass

Flow가				
н				4.1
4.2				
N_2	(p) -	(h)	(t) -	(s)

.

Fig. 4.2 Fig. 4.3

	1	2	3	4	5	6	7	8	9
$\begin{pmatrix} t \\ (\end{pmatrix}$	38.7	95.0	40.0	95.0	40.0	95	40	-108.4	-163.0
p (kPa)	1419	2283	2283	3626	3626	5760	5760	5750	1429
f × 10 ³ (kg/h)	129.4	129.4	129.4	129.4	129.4	129.4	129.4	129.4	129.4
h (kJ/kg)	10.77	69.29	10.13	67.28	7.13	64.32	2.70	-186.9	-217
s (kJ/kg-c)	4.577	4.61	4.436	4.467	4.29	4.322	4.14	3.302	3.37

Table 4.1 N2 cycle of type A

	G1	G2	63	G4	L1
()	-120	-120	-78.9	-38.6	-159.5
p (kPa)	110	110	240	450	440
f (kg/h)	6680	6608	6608	6608	6608
h (kJ/kg)	-4723	-4740	-4661	-4582	-5329
s (kJ/kg-c)	9.485	9.573	9.657	9.726	4.632

Fig. 4.3 Re - liquefaction cycle (t - s)

3)							
Cold	Box					Fig.4.4	Fig.
4.6	. Fig. 4.	4	가		가		
	가	, -140		가			

Fig. 4.4 Temp. - Heat Flow in Cold Box

Fig. 4.5 Temp. - Delta Temp. in Cold Box

Fig. 4.6 Temp. - UA in Cold Box

4.1.2 C (B)

Fig 4.7 Re-liquefaction system (Type B)

Fig. 4.7	С			
BOG	- 120	, 110kPa	가	, C
(separat	or)			
Intercooler	De - superheat	ter		

Intercooler

15,000 kg/h

,

, De - superheater 30,000 kg/h

가

가

Valve				, Compand	ler
	Н	1,419 kPa		1,395kPa	a
	. , 가				
		가			
가				Compander	
95		, Cooler			4
0	. BOG	Condenser			
- 159.5		N ₂ Ma	ss flow가		
N_2	(p) -	(h)	(t) -	(s)	
Fig. 4.8	Fig. 4.9	- 171.04			
		ARITURE UNIC			

	1	2	3	4	5	6	7	8
(^t)	38.7	95.0	40.0	95.0	40.0	95	40	-109.1
p (kPa)	1395	2243	2243	3564	3564	5662	5662	5652
f (kg/h)	129700	129700	129700	129700	129700	129700	129700	129700
h (kJ/kg)	10.83	69.35	10.22	67.37	7.27	64.45	2.90	-187.3
s (kJ/kg-c)	4.583	4.615	4.441	4.473	4.296	4.327	4.146	3.303

Table 4.3 N₂ cycle of type B

	9	10	11 Hay	12	14	15	17	19
$\begin{pmatrix} t \\ \end{pmatrix}$	-163.0	-145.0	-145.0	-115.1	-145.0	-118.7	-145.0	-135.5
p (kPa)	1429	1419	1419	1409	1419	1409	1419	1405
f (kg/h)	129700	129700	30000	30000	30000	15000	84700	130000
h (kJ/kg)	-217.0	-191.4	-191.4	-155.6	-191.4	-159.6	-191.4	-179.4
s (kJ/kg-c)	3.370	3.588	3.588	3.841	3.588	3.816	3.588	3.681

	G1	G2	G3	G4	G5	G6	L1
(^t)	-120	-120	-76.6	-112.2	-77.98	-126.2	-159.5
p (kPa)	110	110	250	240	450	440	430
f (kg/h)	6680	6608	6608	6608	6608	6608	6608
h (kJ/kg)	-4723	-4740	-4654	-4728	-4664	-4826	-5329
s (kJ/kg-c	9.485	9.574	9.661	9.277	9.344	8.36	4.632

Table 4.4 BOG cycle of type B

Fig. 4.9 Re-liquefaction cycle (t-s)

A) BOG Condenser

Fig. 4.10 Temp. - Heat Flow in BOG Condenser

Fig. 4.11 Temp. - Delta Temp. in BOG Condenser

Fig 4.12 Temp. - UA in BOG Condenser

Fig. 4.13 Temp. - Delta temp. in De - superheater

Fig. 4.14 Temp. - UA in De - superheater

C) Counter Current Exchanger

Fig. 4.15 Temp. - Heat flow in Counter Current Exchanger

Fig. 4.16 Temp. - Enthalpy in Counter Current Exchanger

Fig. 4.17 Temp - Heat flow in Intercooler

•

가

3가

- 1) Type A: H
- 2) Type B: C
- 3) Type C: C

Fig. 4.18 Simple model of Re-liquefaction system (Type C)

	E	BOG
G		
Spray	Cool	down
10		
		,
LNG	(Liquid)	가
/n		
BOG	100%	가
71	BOG - 82.4 ,	
		- 99.0
	Separator	By - Pass
, BOG		
		А
1		
.4	BOG7	ł
		Separator
	S Spray 10 LNG 7 BOG 7 , BOG , BOG	Spray Cool 10 Cool 10 LNG (Liquid) BOG 100% 7F BOG - 82.4 BOG , BOG

Fig. 4.21		2	BOG	4.5bar
BOG	LNG Heat exch	anger		가
- 104.9				- 139.
7 가 4.4	bar		가	
			LNG	
가			4.4bar	- 160

Fig. 4.19 Intercooler of BOG compressor

Fig. 4.20 Vapor Fraction 1.0 at BOG Compressor

Fm BOG compressor					
Vapor Fraction	1.0				
Temperature()	- 38.62				
Pressure(bar)	4.50				

Liquid		Liquid	
Vapor Fraction	1.0	Vapor Fraction	0.0
Temperature()	-104.9	Temperature()	-139.7
Pressure(bar) 4.4		Pressure(bar)	4.4

Fig. 4.21 Vapor fraction at LNG heat exchanger

4.2.2 BOG			
BOG		,	BOG
가		Pow	er
	, BOG	가	BOG/N ₂
,	N ₂ Mass flow	የት	

BOG COP

BOG TEMP	- 120	-110	- 100	-90	- 80	-70	- 60
COP	0.267	0.267	0.267	0.267	0.267	0.267	0.267
BOG/N ₂ (%)	5.11	4.91	4.72	4.56	4.4	4.25	4.11
POWER(kW)	5425	5682	5918	6154	6394	6624	6854

Table 4.5 Variation of BOG Temp. in Type A

BOG TEMP	- 50	- 40	- 30	-20	- 10	0	10
COP	0.267	0.267	0.267	0.267	0.267	0.267	0.267
BOG/N ₂ (%)	3.98	3.86	3.74	3.63	3.53	3.43	3.4
POWER(kW)	7084	7314	7545	7776	8008	8241	8474

Table 4.6 Variation of BOG Temp. in Type B

BOG TEMP	- 120	-110	-100	-90	- 80	-70	- 60
COP	0.2622	0.2622	0.2622	0.2622	0.2622	0.2622	0.2622
BOG/N ₂ (%)	5.10	4.90	4.72	4.55	4.40	4.27	4.15
POWER(kW)	5433	5684	5919	6157	6389	6580	6772

BOG TEMP	- 50	-40	- 30	-20	-10	0	10
COP	0.2622	0.2622	0.2622	0.2622	0.2622	0.2622	0.2622
BOG/N ₂ (%)	4.03	3.92	3.82	3.72	3.63	3.54	3.45
POWER(kW)	6965	7159	7354	7549	7746	7943	8143

Fig. 4.23 Variation of BOG Temp. in Type B

BOG Temp('C)

0.15 - 5500

0

3.8

3.6

-100

BOG COP

Fig. 4.24 Variation of BOG Temp. in Type A,B,C

4.2.3 BOG Mass flow

.

BOG Mass flow

BOG Mass flow

N₂ Mass flow BOG

가

COP

,

,

Table 4.7	Variation	of BC	OG flow	in	Туре	Α
-----------	-----------	-------	---------	----	------	---

BOG FLOW	6680	6500	6000	5500	5000	4500	4000
COP	0.267	0.267	0.267	0.267	0.267	0.267	0.267
N ₂ kg/h	129400	125900	116300	106600	96880	87190	77500
$BOG/N_2(\%)$	5.11	5.11	5.11	51.1	5.11	5.11	5.11
POWER(kW)	5425	5279	4873	4467	4061	3654	3248

BOG FLOW	3500	3000	2500	2000	1500	1000	500
COP	0.267	0.267	0.267	0.267	0.267	0.267	0.267
N2 kg/h	67810	58130	48440	38750	29060	19370	9687
BOG/N ₂ (%)	5.11	5.11	5.11	5.11	5.11	5.11	5.11
POWER(kW)	2842	2436	2030	1624	1218	812	406

Table 4.8 Varianion JG flow in Type C

BOG FLOW	6680	6500	6000	5500	5000	4500	4000
COP	0.2806	0.2806	0.2806	0.2806	0.2806	0.2806	0.2806
N2 kg/h	130200	126700	117000	107200	97490	87770	78020
BOG/N ₂	5.13	5.13	5.13	5.13	5.13	5.13	5.13
POWER(kW)	5465	5317	4908	4499	4090	3682	3273

BOG FLOW	3500	3000	2500	2000	1500	1000	500
COP	0.2806	0.2806	0.2806	0.2806	0.2806	0.2806	0.2806
N2 kg/h	5.13	5.13	5.13	5.13	5.13	5.13	5.13
BOG/N ₂	68260	58510	48760	39000	29260	19500	9753
POWER(kW)	2864	2455	2045	1636	1227	818	409

3) Type A C BOG Mass flow

BOG Mass flow

,

BOG Mass flow

N₂ Mass flow BOG

,

가

.

COP

Fig. 4.27 Variation of BOG Flow in Type A,C

4.2.4

 $N_{\rm 2}\ flow$

50~90

•

.

가 (Guide

•

vane)

,

Table 4.9	Variation	of	Expander	efficiency	in	Type	Α
-----------	-----------	----	----------	------------	----	------	---

EXP	90	85	80	75	70	65	60	55	50
СОР	0.3168	0.2907	0.267	0.2452	0.2252	0.2067	0.1895	0.1734	0.1583
N ₂ (kg/h)	113400	121100	129400	138500	148400	159300	171200	184600	199600
BOG/N ₂ (%)	5.83	5.46	5.11	4.77	4.45	4.15	3.86	3.58	3.31
POWER (kW)	4618	5006	5245	5882	6379	6924	7526	8198	8951
C1 (kW)	1843	1969	2104	2252	2413	2589	2784	3001	3245
C2 (kW)	1800	1922	2055	2199	2356	2528	2718	2931	3169
C3 (kW)	1801	1924	2056	2200	2357	2530	2720	2932	3171
EXP (kW)	1117	1099	1081	1060	1038	1014	987	957.1	923.8

AND ME UM

EXP	90	85	8(75	70	65	60	55	50
COP	0.3335	0.3059	0.2806	0.2576	0.2363	0.2167	0.1985	0.1815	0.1657
BOG/N ₂	5.85	5.48	5.13	4.79	4.47	4.17	3.88	3.60	3.33
N ₂ FLOW	114100	121800	130200	139300	149300	160200	172300	185800	200800
POWER_t(kW)	4654	5041	5465	5921	6422	6971	7577	8253	9008
C1(kW)	1856	1981	2118	2266	2428	2505	2802	3020	3255
C2(kW)	1812	1934	2068	2212	2370	2544	2736	2949	3188
C3(kW)	1813	1935	2069	2213	2372	2545	2737	2951	3189
e(kW)	1117	1100	1081	1061	1039	1014	987.6	957.8	924.4

Fig. 4.28 Variation of Expander efficiency in Type A,C

Fig. 4.29 Variation of Expander efficiency in Type A,C]

4.2.5	
	Cooler

60

Cooler Heat exchanger

Cooler Fig. 4.30 1 (1) , 7 (2)

 N_2 Mass flow

,

•

•

20

가

COP					- ,	가
	, (Cooler	. alline .		,	COP
				Mass flow		
Н	C)				가
	С		COP가			

,

1 Cooling 가 LNG

()	60	55	50	45	40	35	30	25	20
1temp()	59.68	54.52	49.31	44.05	38.72	33.39	27.98	22.48	17.31
press.(bar)	33.45	38.16	43.64	50.06	57.6	66.45	76.94	89.42	103.9
COP	0.2222	0.2318	0.2424	0.254	0.267	0.2819	0.2984	0.3169	0.3394
BOG/N ₂ (%)	2.76	3.27	3.83	4.44	5.11	5.84	6.66	7.57	8.61
N ₂ (kg/h)	239600	201900	172400	148800	129400	113100	99190	87290	76960
POWER (kW)	6461	6204	5944	5685	5425	5154	4884	4616	4329
C1 (kW)	2452	2366	2279	2192	2104	2010	1917	1823	1715
C2 (kW)	2429	2337	2244	2150	2055	1956	1857	1758	1654
C3 (kW)	2429	2337	2244	2150	2056	1958	1861	1764	1663
EXP (kW)	1141	1127	1113	1097	1081	1061	1041	1021	993.3

Table 4.10 Variation of Cooling Temp. in Type A

()	60	55	50	45	40	35	30	25	20
1temp()	59.83	54.5	49.22	43.88	38.71	33.05	27.426	21.68	16.06
press.(bar)	33.17	37.89	43.36	49.77	57.189	66.18	76.79	89.47	104.5
COP	0.2304	0.2392	0.2507	0.2637	0.2806	0.2959	0.3149	0.3367	0.3636
BOG/N ₂ (%)	2.78	3.28	3.84	4.44	5.13	5.84	6.65	7.55	8.57
N ₂ FLOW	240300	203500	174100	150400	130200	114000	100500	88510	77950
POWER_t(kW)	6480	6263	6012	5756	5464	5223	4961	4696	4419
POWER_COMP	7321	7100	6838	6568	6255	6002	5723	5441	5141
C1(kW)	2449	2387	2306	2222	2118	2044	1957	1869	1770
C2(kW)	2436	2357	2266	2173	2068	1978	1881	1783	1681
C3(kW)	2436	2356	2266	2173	2069	1980	1885	1789	1690
e(kW)	1132	1128	1117	1103	1081	1070	1053	1036	1013

Fig. 4.30 Temp. & Pressure at 3rd stage compressor

Fig. 4.31 Compander variation of Cooling Temp. in Type A,C

Fig. 4.33 Variation of Cooling Temp. in Type A,C

,

가

Cooler 10 (40 30) Type A 541kW, Type C 503kW

· ,

- (1) Dr.Boyun Guo and Dr.Ali Ghalmbor "Natural Gas Engineering Handbook", University of Louisiana at Lafayette, pp.1~11 (2005)
- (2) J.G.Weisend II, "Handbook of Cryogenic Engineering", Taylor & Francis. pp.281~283(1998)
- (3) 豊一郎, G.Klipping "低溫工学 ハンドブック" (VDI: Leirgangs Hand Buch Kryotechnik", pp.1~12(1978)
- (4) , " ", (2000)
- (5) J.W.Moon, Y.P.Lee, Y.W.Jin, E.S.Hong, H.M.Chang, "Cryogenic Refrigeration Cycle for Re-liquefaction of LNG Boil-Off Gas"
- (6) Dongil Yeo, "Propulsion Alternatives for Modern LNG carriers, Samsung heavy industries", Gastech(2007)
- (7) Peter G.Noble, "The next generation of Large LNG carriers for long distance and harsh environments", ConocoPhilips, Gastech(2007).
- (8) , , " 2 Claude ", * 6 2 , pp.130~139(1994)
- (9) , , , , , , "LNG
- (10) , "Membrane Type LNG

, pp.15~20 (2000.2).

(11) , "가

".

pp.1~4 (2000)

- (12) Pierre Jean, Henri Petit, "Methane by Sea, a history of french methane carrier techniques"
- (13) , "가

(2007)

(14) , "LNG

",

", pp.1~4

",

,

(1998)

- (15) http://www.lngplants.com/LNGships.html
- (16) http://www.shipbuildinghistory.com/world/highvalue.htm
- (17) http://www.coltoncompany.com

