

Thesis for Master Degree

Distribution of ²¹⁰Po and ²¹⁰Pb in the Pelagic Ecosystem around Jeju Island and in the Oysters and Mussels in Korean Coast

1945

August 2016

Department of Convergence Study on the Ocean Science and Technology

School of Ocean Science and Technology Korea Maritime and Ocean University

Cho, Boeun

Approved by the Committee of the Ocean Science and Technology School of Korea Maritime and Ocean University in Fulfillment of the Requirements for the Master of Science Degree

Prof. Kim, Dongseon., Chair

Prof. Kim, Suk Hyun., Advisor

Prof. Yu, Ok Hwan., Advisor

May 30, 2016

1945

Department of Convergence Study on the Ocean Science and Technology Ocean Science and Technology School Korea Maritime and Ocean University

Content

List of Tables	iv
List of Figures	v
List of Abbreviation	vi
Abstract	viii

		INTE AND OL	EAN.	
1. Introduction	No.			
2 Matarials and	Mothode			

2. IVI	iterials and interious
2.1	Sampling ······ 8
	2.1.1 Seawater sampling procedure 10
	2.1.2 Plankton collection 10
	2.1.3 Fishes collection and sampling procedure
	2.1.4 Oyster and mussel collection and sampling procedure
	2.1.5 After sampling 12
2.2	²¹⁰ Po analysis 12
	2.2.1 Digestion of samples 12
	2.2.2 Preparation of the silver planchet 13
	2.2.3 Spontaneous plating 13
	2.2.4 Alpha counting 15
2.3	²¹⁰ Pb analysis ······16
	2.3.1 Ion-exchange column 16
	2.3.2 Recovery of Pb

Collection @ kmou - - -

2.3.3 ²¹⁰ Pb analysis]	17
2.4 Q/A and Q/C		8

3. Concentration factor of ²¹⁰Pb and ²¹⁰Po with the trophic level of phytoplankton, zooplankton, anchovy and mackerel in the coastal water of Jeju Island, Korea

3.1 The distribution of the activity concentration of 210 Po and 210 Pb in the coastal
water and in plankton
3.2 The distribution of the activity concentration of 210 Po and 210 Pb in the anchovy
and mackerel
3.3 Concentration factor of ²¹⁰ Po and ²¹⁰ Pb through the trophic levels
4. Annual effective dose of ²¹⁰ Po from oysters and mussels
4.1 The activity concentration of ²¹⁰ Po in oysters and mussels35
4.2 Assessment of effective dose 45
1945
5. Conclusions 48
Acknowledgements
References

List of Tables

Table	1 Analytical accuracy of ²¹⁰ Po using the reference material, IAEA-414
	(Radionuclides in mixed fish from Irish Sea and North Sea) 20
Table	${\bf 2}$ The activity concentrations and distribution coefficients of ^{210}Po and ^{210}Pb in the
	coastal surface water around Jeju Island23
Table	3 The activity concentrations and concentration ratios of $^{210}\mbox{Po}$ and $^{210}\mbox{Pb}$ in the
	trophic levels of phytoplankton, zooplankton, anchovy and mackerel around Jeju
	Island ·····
	26
Table	4 Comparison of the activity concentrations and concentration ratios of $^{\rm 210}{\rm Po}$ and
	$^{210}\mbox{Pb}$ in the planktivorous and carnivorous fish with those in other studies $\cdots\cdots\cdots$ 30
Table	5 The concentration factors of ²¹⁰ Po and ²¹⁰ Pb in the trophic levels of
	phytoplankton, zooplankton, anchovy and mackerel around Jeju Island
Table	6 Activity concentrations of 210 Po and 210 Pb in the soft tissues of the oysters and
	the mussels collected in Korean coast
Table	7 Comparison of ²¹⁰ Po activity concentrations in the oysters and the mussels of
	other countries with those of this study
Table	8 Activity concentrations of 210 Po in the soft tissue of oysters and concentrations
	of suspended particulate matter in the surface water of sampling areas
Table	9 Comparison of annual effective doses of 210 Po from the ingestion of mussels
	and oysters in other countries with this study

Collection @ kmou - iv -

List of Figures

Fig. 1 The ²³⁸ U decay chain
Fig. 2 Study sampling locations (shown with cross lines and dots)
Fig. 3 Spontaneous plating set for ²¹⁰ Po onto a Ag planchet
Fig. 4 The concentration factors of ²¹⁰ Po and ²¹⁰ Pb in phytoplankton, zooplankton,
anchovy and mackerel around Jeju Island
Fig. 5 Each site of activity concentrations of ²¹⁰ Po in the soft tissues of oysters and
concentrations of suspended particulate matter (SPM) in the surface water of
sampling areas observed in November and across four seasons form 2003 to 2013
Fig. 6 Correlation between the activity concentrations of ²¹⁰ Po in the soft tissues of
oysters and the concentrations of suspended particulate matter (SPM) in the
surface water of sampling areas observed in November and across four seasons
from 2003 to 2013 43
Fig. 7 Correlation between the concentrations of suspended particulate matter (SPM) and
the ratios of the concentrations of chlorophyll-a (Chl-a) to the SPM (Chl-a·SPM
$(\times 10^{-3})$) in the surface water of sampling areas observed in November and across
four seasons from 2003 to 2013 44
Fig. 8 The relative concentration factors in zooplankton, anchovy and mackerel to the
concentration factors of ²¹⁰ Po and ²¹⁰ Pb in phytoplankton around Jeju Island 50
Fig. 9 The ratios of ²¹⁰ Po and ²¹⁰ Pb concentration factors in phytoplankton, zooplankton,

anchovy and mackerel around Jeju Island51

List of Abbreviation

 $^{209}\text{N}_1\text{:}$ Background subtraction of the alpha spectrum for detector geometry for ^{209}Po in the 1st count.

 $^{209}\text{N}_2\text{:}$ Background subtraction of the alpha spectrum for detector geometry for ^{209}Po in the 2nd count.

 $^{210}A_{Po}^{m}$: Activity concentration of emitted ^{210}Po from the 2nd plating time to the 2nd counting time.

- ²¹⁰A_{Pb}: Activity concentration of emitted ²¹⁰Pb to ²¹⁰Po after ion exchange (i.e., the ion exchange column).
- ²¹⁰A'_{Pb}: Loss in activity concentration of ²¹⁰Pb from the sampling time to before ion exchange.
- $^{210}A_{Pb-insitu}$: Activity concentration of ^{210}Pb at the sampling time (= ^{210}Pb).
- $^{210}\mathrm{A}_{\mathrm{Po}}$: Activity concentration of $^{210}\mathrm{Po}$ at the 1st plating time before correction.
- $^{210}A_{Po-ingrowth}$: The correction to ingrowth from ^{210}Pb to $^{210}\text{Po}.$
- $^{210}A_{Po-insitu}$: Activity concentration of ^{210}Po at the sampling time (= ^{210}Po).
- $^{210}N_1$: Background subtraction of the alpha spectrum for detector geometry for ^{210}Po during the 1st count.
- $^{210}N_2$: Background subtraction of the alpha spectrum for detector geometry for ^{210}Po during the 2nd count.
- $A_{\rm spike}:$ The first-added ^{209}Po as a yield tracer for $^{210}\text{Po}.$
- $A_{spike}^{\,2}$: The second-added ^{209}Po as a yield tracer for $^{210}\text{Pb}.$
- AED: The annual effective dose from foods.

CE_{Po210}: ²¹⁰Po internal dose coefficient change Bq to Sv.

CF: Concentration factor.

Chl-a: Chlorophyll-a.

C_{Po210}: Result of ²¹⁰Po activity concentration in this study.

IP0210: Amount of ingestion to food per year per capita.

K_d: Distribution coefficient.

- ηC: Recovery of ²¹⁰Pb.
- SPM: Suspended particle matter.
- λ_{Bi} : Proportionality constant of ²¹⁰Bi.
- λ_{Pb} : Proportionality constant of ²¹⁰Pb.
- λ_{Po} : Proportionality constant of ²¹⁰Po.
- λ_{Pot} : Proportionality constant of ²⁰⁹Po.
- T₁: Time from the 1st mid-plating to the 1st counting mid-time.
- T₂: The time from the 1st spike to the 1st plating mid-time.
- T₃: The time from sampling to the 1st plating mid time.
- T₄: The time from the 2nd mid-plating to the 2nd counting mid time.
- T₅: The time from the 2nd spike to the 2nd plating mid time.
- T₆: The time from the 2nd plating mid-time to ion-exchange column time.
- T7: The time from ion exchange/ion-exchange column to sampling time.

제주 주변 해역의 표영 생태계와 한국 연안의 굴과 홍합에서 ²¹⁰Po과 ²¹⁰Pb의 분포

조 보 은

한국해양대학교 해양과학기술전문대학원 해양과학기술융합학과

. . .

해양생물체에 많은 영향을 주는 자연방사성 동위원소인 ²¹⁰Pb과 ²¹⁰Po는 ²³⁸U 의 딸 원자인 가스형태의 ²²²Rn으로 인해 해양생태계로 들어오게 된다. 각 분 류군별로 서식지, 먹이를 먹는 방식, 먹이종류 등 여러 원인으로 인해, 각각의 해양생물은 상이한 ²¹⁰Pb과 ²¹⁰Po 체내 농도를 갖는다. 그로 인해 해수 대비 생 물에 농축하는 방사성 동위원소 또한 다양한 범위를 보인다. 식품 섭취를 통한 ²¹⁰Po의 유효선량 중 많은 부분이 수산물에 의한 것으로 알려져 있으며, 그 중 연체동물은 ²¹⁰Po을 높은 농도로 축적한다는 연구 결과들이 있다.

제주 해역의 해양 영양단계(식물플랑크톤-동물플랑크톤-멸치-고등어)에 따른 ²¹⁰Po과 ²¹⁰Pb의 축적정도를 알아보았다. 제주 해역 표층해수의 총 ²²¹⁰Po과 ²¹⁰Pb의 농도는 0.83±0.004 와 1.27±0.03 mBq·kg⁻¹이며, 해수 중 용존성 물 질의 ²²¹⁰Po과 ²¹⁰Pb의 농도는 0.75±.06 과 1.22±0.09 mBq·kg⁻¹이다. 식물플 랑크톤의 ²¹⁰Po과 ²¹⁰Pb의 해수 대비 농축계수는 각각 1.5×10⁵와 2.6×10⁴로 ²¹⁰Po이 약 5배 더 높았다. 동물플랑크톤의 ²¹⁰Po농축계수는 식물플랑크톤과 비슷한 반면에 ²¹⁰Pb 농축계수는 약 5배 낮아 동물플랑크톤은 배설물을 통한 ²¹⁰Pb의 배출이 식물플랑크톤보다 상대적으로 더 빠르게 이루어지는 것을 보여 주었다. ²¹⁰Po농축계수는 멸치가 플랑크톤에 비하여 수 배 더 높은 값을 보였

Collection @ kmou - 🗤 -

다. 반면에, 고등어의 근육은 멸치에 비해 ²¹⁰Po농축계수가 약 100배 이상 낮 아 ²¹⁰Po은 상위 영양단계로 갈수록 낮아지는 것을 보였다. 멸치와 고등어의 내장 부위는 근육에서 보다 ²¹⁰Po농축계수가 8 - 38 배 높아 ²¹⁰Po 농축은 내 장 부위에서 높게 이루어지는 것을 보였다. 상위 영양단계로의 ²¹⁰Pb 농축은 식물플랑크톤-동물플랑크톤-멸치로 가면서 각 영양단계마다 약 5배 감소하는 경향을 보였다. 이후 멸치에서 고등어로 전이되는 과정에서는 고등어의 근육과 내장부위의 ²¹⁰Pb농축계수가 멸치보다 30 - 70%로 이전 영양단계의 농축 보 다 더 적은 감소가 이루어졌다.

한국은 굴과 홍합의 생산량과 자급률이 높다. 따라서 한국에서 생산되는 굴 과 홍합의 ²¹⁰Po과 ²¹⁰Pb의 농도분포를 파악하고, 이들의 섭취로 인한 연간 유 효선량을 추정해 보았다. 굴과 홍합의 ²¹⁰Po농도는 각각 41.3 - 206과 42.9 -46.7 Bq·(kg·ww)⁻¹로 나타났다. 굴의 ²¹⁰Po농도는 각각 41.3 - 206과 42.9 -46.7 Bq·(kg·ww)⁻¹로 나타났다. 굴의 ²¹⁰Po농도는 서해안에서 상대적으로 높은 농도를 보였으며, 동일 해역 표층해수 중의 부유 물질 농도와 매우 밀접한 양 의 1차 상관관계(R²=0.89)를 보였다. 굴과 홍합의 ²¹⁰Pb농도는 각각 2.7 - 8.2 와 2.0 - 4.2 Bq·(kg·ww)⁻¹로 나타났다. 동일 해역 표층해수 중의 부유 물질 농도와 비교적 밀접한 양의 1차 상관관계(R²=0.74)를 보였다. 굴과 홍합 가식 부의 ²¹⁰Po농도와 한국 성인의 굴과 홍합의 평균 섭취량으로부터 추정된 ²¹⁰Po 연간 유효선량은 각각 21 - 104와 5.01 - 5.46 μSv·y⁻¹였다. 한국에서 굴 섭 취로 의한 ²¹⁰Po의 연간 유효선량은 다른 나라에 비해 비교적 높았으나, 홍합 은 다른 나라에 비해 낮은 값을 보였다. 한국에서 굴과 홍합의 섭취로 인한 ²¹⁰Po의 연간 유효선량은 평균 76±42 μSv·yr⁻¹로 음식물 섭취로 인한 ²¹⁰Po 의 연간 총 유효선량의 약 28±16%, 총 수산물 섭취 중 약 35±19%를 차지하 는 것으로 나타났다.

KEYWORDS: ²¹⁰Po; ²¹⁰Pb; Bio Concentration Factor 생물농축; Annual Effective Dose 연간유효선량.

Chapter 1. Introduction

THE AND OCEN

Polonium was discovered by Pierre and Marie Curie during their study on the radioactivity of uranium and thorium in 1898 (Figgins, 1961). They called it 'Radium F', later renaming it polonium after Marie Curie's native land of Poland (Latin: Polonia). ²¹⁰Po emits a high-energy alpha (5.3 MeV) particle among the ²³⁸U decay series, and this radioactivity amounts to 1.66 TBq· ⁻¹, causing the substance to have about the main effective dose in marine biota (Argonne National Laboratory Environmental Science Division (ANL), 2007; Cherry & Shannoh, 1974). According to the hazard function (HF) model, intake of 1 MBq·(kg·bw)⁻¹ of ²¹⁰Po per day would shorten the life span to 28 days due to the total damage to the kidney and other organs with accompanying severe loss of lymphocytes, white blood cells, red blood cells and hemoglobin (Scott, 2007).

²¹⁰Pb and ²¹⁰Po flux in the earth consist of a variety of types. Their presence can be brought about naturally (resuspension of soil, sea salt spray, volcanic activity, and so forth) or by artificial fossil fuel burning (via tetraethyl lead combustion, dispersion of phosphate fertilizers and gypsum byproducts, etc). ²¹⁰Pb and ²¹⁰Po of the highest concentrations are generally natural in source; relevant in the ²³⁸U decay

series are daughter atoms of ²²²Rn, which is emitted from ²³⁸U in the crust of the earth as 99% of its total type. An inert gas of ²²²Rn (half-life: 3.8 days) becomes ²¹⁰Pb (half-life: 22.2 years), ²¹⁰Bi (half-life: 5.0 days) and ²¹⁰Po (half-life: 138.4 days), through to the short half-life daughter atoms (Fig. 1). ²¹⁰Pb of the metal atom is dispersed (both on land and on the surface of the ocean) via precipitation and attached aerosol. The in-flow of radionuclides on the land was re-suspended due to the transpiration and dust; the in-flow in the ocean settled as per Stokes' law, by attaching to a suspended particle (Karali et al., 1996; Pietrzak-Fil & Skowronska-smolak, 1995; Preiss et al., 1996).

ÓŁ

²¹⁰Pb is present in biota in high concentrations, specially ²¹⁰Bi and ²¹⁰Po, which are the ²¹⁰Pb daughter atoms and have a high activity concentration in the marine biota (Holtzman, 1996). Among the natural radionuclides, ²¹⁰Po is the one that most effectively accumulates in marine biota, replacing sulfur, selenium, and tellurium as the same 16 periods with ²¹⁰Po in a periodic table of the elements (Cherry & Heyraud, 1981). ²¹⁰Pb and ²¹⁰Po, though showing high accumulations in marine biota, also show variations along a range that is determined by the surrounding environment and the taxonomic group of the biota. Activity concentrations of ²¹⁰Pb and ²¹⁰Po in marine biota differs from site to site according to whether a site has or does not have industrial sewage, whether the amount of suspended matter due to water current is different, and also the amount of ²³⁸U (Fowler, 2011; Samad et al., 2010; Štrok & Smodiš, 2011). Activity concentrations of ²¹⁰Pb and ²¹⁰Po change due to the type of marine biota; each taxonomic group has a different habitat, feeding behavior, and feeding type. Mollusks in particular have high radioactive concentrations of ²¹⁰Po, from 1.7 times to up to a maximum of 40 times of that in other marine biota (Aközcan & Ugur, 2013; Alam & Mohamed, 2011a; Heyraud & Cherry, 1979). Most mollusks are suspension feeders, and take up both directly suspended particulate matter in seawater and food organisms such as phytoplankton, which contain heavy metals and other toxic substances including in situ algae-produced bio-toxins (Anderson et al., 2002). In many cases, heavy metals in ovsters and mussels have been used to monitor concentrations of dissolved heavy metals in seawater (Goldberg et al., 1983; Rainbow, 1995). High concentrations of radionuclides can also be monitored using oysters and mussels (Connan et al., 2007; Rožmarić et al., 2012). Feeding type and source of food also lead to organisms having higher or lower concentrations of radionuclides. Planktivorous fish are found to have higher radioactive concentrations of ²¹⁰Po than are the carnivorous fish of upper trophic level (Aközcan & Ugur, 2013; Cherry et al., 1989; Lazorenko et al., 2002).

Instance in which suspended particles (floating particles) in ²¹⁰Po is more present in a given organism as compared to those who show dissolved ²¹⁰Po on testing more likely reflect the ingestion of heavy metals (Bacon et al., 1976). Concentration factors change according to the radioactivity concentration in seawater. Therefore, concentration factors of ²¹⁰Pb and ²¹⁰Po are determined according to what sea is tested. Previous research about the concentration factor (CF) of ²¹⁰Pb and ²¹⁰Po following the food chain of the marine biota in the pelagic and bottom ecosystem in the southern Atlantic revealed a higher range of CF for ²¹⁰Po plankton ($1 \times 10^4 - 1 \times 10^6$) than for fish ($1 \times 10^3 - 7 \times 10^5$). Specifically, planktivorous sardines (7×10^5) showed higher ²¹⁰Po CFs than did carnivorous tuna (5×10^3) (Carvalho 2011; Carvalho et al. 2011). The CF of ²¹⁰Pb and ²¹⁰Po following trophic levels of the phytoplankton (8×10^4), zooplankton (5×10^5), fish (4×10^5) was researched in Korea in the Donghae (Suh et al., 1995). Currently, most research is examining each CF without following the food chain (Alam & Mohamed, 2011a; Aoun et al., 2015; Lubna et al., 2011).

The CFs of ²¹⁰Pb and ²¹⁰Po in the marine-ecosystem food chain is not frequently researched in Korea. The predominant types of fish in the South-North area around Jeju Island include anchovies (*Engraulis japonicus*) and mackerels (*Scomber japonicas*), which comprised 28% and 18% of the total fish among the 51 species across four seasons for which measurements were available (Korea institute of Ocean Science & Technology (KIOST), 2005). Diatom and copepod composed a high share of the plankton in the study area; copepods showed a high share in the Kuroshio warm current, including study area (Kim et al., 2013; KIOST, 2005). The process of zooplankton consuming phytoplankton helps conduct the primary food source toward the high-trophic level biota (Kim et al., 2013). A shoal of anchovy has spread around the Korean peninsula recently (March 2016). These anchovies prepared for winter in South area around the Korean peninsula; this location is where they take in phytoplankton and zooplankton, and they then selective feed on

Collection @ kmou - ₅ -

copepod in the summer (Kim et al., 2013; National Fisheries Research and Development Institute (NFRDI), 2010). Mackerel moved along the Tsushima warm current and the East China Sea warm current due to the seasonal migration. Following the Tsushima warm current, the presence of mackerel spread to the east sea of Korea; the main spawning season was April to May (NFRDI, 2010). Mackerel also are predators of anchovy; in a previous study, of the mackerel caught in the South Sea of Korea, 37% had anchovy in their digestive systems, and anchovy is generally considered a large part of mackerel's diet (Yoon et al., 2008). Chapter 3 shows the measured activity concentration of ²¹⁰Pb and ²¹⁰Po in each biota and analyzes the transfer of ²¹⁰Pb and ²¹⁰Po according to the trophic level of the phytoplankton, zooplankton, anchovy and mackerel in the sea area around Jeju Island.

According to the concentration factor and activity concentration in marine biota, radionuclides are accumulation in people through seafood intake (Cherry & Shannon, 1974; Skwarzec & Falkowski, 1988). The annual effective dose is commonly divided into medical exposure and natural exposure of radiation. The annual effective dose through food intake (effective radionuclides due to the decay of the radionuclides uranium and thorium) is 0.34 mSv·yr⁻¹. The effective dose of ²¹⁰Po at 0.28 mSv·yr⁻¹ occupies about 84% of the total annual effective dose. Eighty-seven percent of this annual effective dose from food is from seafood, at 0.25 mSv·yr⁻¹ (United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), 2000; International Atomic Energy Agency (IAEA), 2011). Previous research in different countries has confirmed that ingestion of ²¹⁰Po is high due to consumption of seafood (Lee et al., 2009; Ota et al., 2009; Pietrzak-Flis et al., 1997; Sivakumar, 2014).

Oysters and mussels (as mollusks) have high concentrations of ²¹⁰Pb and ²¹⁰Po, with various ranges of activity concentrations for ²¹⁰Po. Consequently, the annual

effective dose of ²¹⁰Po can also easily change following consumption of oysters and mussels (Aközcan, 2013; Connan et al., 2007; Khan et al., 2014; Lee & Wang, 2013; Rani et al, 2014; Rožmarić et al., 2012; Štrok & Smodiš, 2011). The production rates of oysters and mussels in Korea are very high. The Food and Agriculture Organization of the United Nations (FAO) Aquaculture Production Dataset (Fish Stat, 2002- 2012) reported that Korea produces more than 3 times the average world oyster production and 1.5 times more than the average mussel production. However, the level of activity of ²¹⁰Po and the effective dose from the digestion of oysters and mussels in Korea has not been researched in spite of the high levels of production and consumption. Chapter 4 discusses research in which the distribution of ²¹⁰Po was investigated in the tissues of oysters and mussel collected in a major production area in Korea, along with the annual effective dose of ²¹⁰Po from the intake of oysters and mussels.

Chapter 2. Materials and Methods

2.1 Sampling

Sampling for the determination of ²¹⁰Pb and ²¹⁰Po levels in oysters, mussels, and fish from the sea areas around Korea was carried out in 2013 and 2014. Seawater, plankton, anchovy and mackerel were collected in and around Jeju Island (Fig. 2).

Fig. 2 Study sampling locations (shown with cross lines and dots)

2.1.1 Seawater sampling procedure

Seawater sampling was carried out using a pump in May 2014 in and around Jeju Island, 2 km away from the harbor of Ham-Duk. Approximately 20 kg of seawater was filtered through a 0.45 μ m cartridge filter. Unfiltered total seawater, filtered seawater, and total seawater were analyzed separately. All seawater samples were acidified with 50 ml guaranteed-pure (GR) concentrated HCl to 6 mol·L⁻¹, followed by addition of stable Pb and ²⁰⁹Po (A_{spike}) as a yield tracer. For seawater in which there was known to be a specific concentration of suspended particulate matter (SPM), the SPM content was determined using an 0.4 μ m filter, and the non-filtered water was packed into a 4 L sterilization water bottle after separation from the filtered 1 L of seawater.

Manganese was used to extract polonium (²⁰⁹Po and ²¹⁰Po) from seawater samples by adding saturated KMnO4 and 0.4 mol·L⁻¹ MnCl₂ (ratio 1:2) to the acidified seawater sample. After equilibration for several hours, the solution was brought to pH 8 - 9 with NH₄(OH), and precipitates isolated by centrifugation.

2.1.2 Plankton collection

Samples were collected using a marine phytoplankton net with a mesh size of 20 μ m to 300 μ m and a marine zooplankton net with a mesh size of 300 μ m. Some of the tiny zooplankton was possibly mixed in the phytoplankton because size was used to separate the two. The phytoplankton and zooplankton were towed in surface waters to the sea water sampling site, which was located in close proximity

to their collection.

2.1.3 Fishes collection and sampling procedure

Fish samples were collected from the local market (Hanlim-Hang) with assistance from the Korea Fisheries Resources Agency. Two species were selected for analysis according to their feeding behavior and trophic level: one of them was the planktivore fish Japanese Anchovy (*Engraulis japonicus*) and the other the carnivore fish chub Mackerel (*Scomber japonicus*). Mackerel was generally dissected for analysis of radionuclides in the muscles, skin, and internal tissues (liver and whole internal tissue). Anchovy was divided into head, muscle, and internal tissues. These preparations were performed to determine the concentration of ²¹⁰Po and ²¹⁰Pb in each part of the body.

1945

2.1.4 Oyster and mussel collection and sampling procedure

Oysters (*Crassostrea gigas*) (average shell length of 10 cm) were collected from 5 hanging culture farms (Seosan, Boryeong, Wando, Yeosu, Tongyeong) and mussels (*Mytilis coruscus*) were collected at 2 sites (Yeosu, Tongyeong) from November 26 - 29, 2013. Soft tissues were separated from the collected oysters, which were rinsed using distilled water to remove sale, then frozen at -15° C. A freeze-dryer was used to lyophilize the frozen samples for at least 36 h, and dried power was produced with a grinder.

2.1.5 After sampling

All samples were transferred at a temperature of - °C without seawater samples. To reduce errors, each sample (minimum weight, 10 kg) was divided into 3 bundles after being ground and shaken. Stable Pb and ²⁰⁹Po (A_{spike}) served as an added yield tracer in all samples. After preconditioning, the count for ²¹⁰Po sampling was performed as soon as possible because of its short half-life. Wet or dried samples were added in the Teflon beaker.

2.2 ²¹⁰Po analysis

2.2.1 Digestion of samples

Samples were placed in the 250 ml Teflon beaker, spiked with an aliquot of 209 Po as a yield tracer (A_{spike}), and digested with a concentrated HNO₃ solution (Nitric acid 65%, Merck KGaA Darmstadt, Germany) and H₂O₂ (Hydrogen peroxide, Junsei chemical Co. Ltd, Japan). The mixture of samples and acids were evaporated near dryness at 80°C to 100°C. The remaining residue was digested using concentrated HF (Suprapur Hydro fluoric acid 40%, EMD Millipore corporation, USA) to concentrated HNO₃. Samples were heated at 90°C for 3 hours. The digested solution was evaporated to near dryness at 80°C. To change the remaining HNO₃ to HCl, concentrated HCl (Hydrochloric acid fuming 37%, Merck KGaA Darmstadt, Germany) was added in the beaker and evaporated

1945

Collection @ kmou - 12 -

repeatedly (about 10 times) to dry it completely. Last, the remaining residue was diluted with 100 ml $0.5 \text{ mol} \cdot \text{L}^{-1}$ HCl solution. Triplicate samples were used to reduce errors.

2.2.2 Preparation of the silver planchet

The silver planchet (99.9% Ag, Φ 24.1 mm × 0.15 mm, Aldrich) was washed with acetone for 1 hour, and acetone was then removed using dust-free tissue. A thin layer of enamel paint was applied to one side of the planchet; it was then punched to make a hole for hanging thread (Fig. 3).

2.2.3 Spontaneous plating

One-half gram of ascorbic acid was added into the sample (which was diluted with 0.5 mol·L⁻¹ HCl). The magnetic stirrer speed was adjusted to 220 rpm; the researchers subsequently waited for 30 minutes for the ascorbic acid to dissolve and combine with Fe^{3+} . We then placed the silver planchet in the beaker for 15 hours (Lee et al., 2014). ²⁰⁹Po and ²¹⁰Po were spontaneously plated on the silver planchet (Fig. 3). After plating, the planchet was rinsed with distilled water, labeled, and put in a well-sealed plastic bag.

1945

2.2.4 Alpha counting

The silver planchet was counted to over a 1000 count using an alpha spectrometer (Canberra series 35 MCA, equipped with an A450-18AM PIPS detector with an active surface area of 450 mm²). The full width at the half maximum of detection is < 20 KeV. The counter baseline was estimated for a more accurate result, with the baseline considered as 1 counter per hours above 3 MeV. The activity concentration of ²¹⁰Po was corrected from those of ²¹⁰Pb measured after one and a half years. The following formula was used for the ²¹⁰Po calculations [1-4].

$${}^{210}A_{Po}(dpm) = \frac{{}^{210}N_1}{{}^{209}N_1} \times E^{\lambda_{Po}T_1} \times E^{-\lambda_{Pot}T_2} \times A_{spike}$$
[1]

$${}^{210}A_{Po-ingrowth} = {}^{210}A_{Pb-insitu} \times$$
^[2]

$$\left[\frac{\lambda_{\mathrm{Bi}} \times \lambda_{\mathrm{Po}} \times E^{-\lambda_{\mathrm{Pb}} I_{3}}}{(\lambda_{\mathrm{Bi}} - \lambda_{\mathrm{Pb}})(\lambda_{\mathrm{Po}} - \lambda_{\mathrm{Pb}})} + \frac{\lambda_{\mathrm{Bi}} \times \lambda_{\mathrm{Po}} \times E^{-\lambda_{\mathrm{Bi}} I_{3}}}{(\lambda_{\mathrm{Pb}} - \lambda_{\mathrm{Bi}})(\lambda_{\mathrm{Po}} - \lambda_{\mathrm{Bi}})} + \frac{\lambda_{\mathrm{Bi}} \times \lambda_{\mathrm{Po}} \times E^{-\lambda_{\mathrm{Po}} I_{3}}}{(\lambda_{\mathrm{Pb}} - \lambda_{\mathrm{Po}})(\lambda_{\mathrm{Bi}} - \lambda_{\mathrm{Po}})}\right]$$

$${}^{210}A_{Po-insitu}(dpm) = ({}^{210}A_{Po} - {}^{210}A_{Po-ingrowth}) \times E^{-\lambda_{Pb} \times T_3}$$
[3]

$$^{210}A_{Po-insitu} = (Bq \cdot kg^{-1}) = {}^{210}A_{Po-insitu} (dpm) \times (sample)(kg) - 1 \times 10^3 \cdot 60^{-1} [4]$$

 $^{210}A_{Po}$ represents the activity concentration of ^{210}Po in the plating time before correction; Accurate measurement of ^{210}Po is required for correction of the ^{210}Po activity concentration, which grows in the ^{210}Pb during the interval between sampling time and plating time ($^{210}A_{Po-ingrowth}$). The activity of $^{210}A_{Po-insitu}$, after the correction to ingrown Pb, excludes $^{210}A_{Po-ingrowth}$ at $^{210}A_{Po}$ and then allows the correction of the activity concentration of ^{210}Po , which is emitted during the period from sampling time to plating time. Using formula [4] allows the correction of weight and units for activity concentrations of ^{210}Po in the samples (GEOTRACES Standards and Intercalibration (S&I), 2014).

2.3 ²¹⁰Pb analysis

2.3.1 Ion-exchange column

The residue of samples after spontaneous plating was evaporated almost to the point of burning. The remaining residue (ascorbic acid) was digested using concentrated HNO₃. After digestion, samples were evaporated repeatedly (about 3 to 4 times). At the end of evaporation, the HNO₃ medium was changed to 9 mol·L⁻¹ HCl.

The remanent polonium ion was removed for use in the AG® 1-X8 ion-exchange

column (100 - 200 mash chloride form, Bio-Rad Laboratories, Inc. USA). The ionic passage through the ion-exchange column was collected in a 25 ml PE bottle. The samples with added ²⁰⁹Po (A_{spike}^2) tracer were kept during 6 months. To measure the recovery of the tracer, 1-ml of the passage through the ion-exchange column samples was saved.

2.3.2 Recovery of Pb

Stable Pb for recovery was measured in saved 1 ml samples after passage through the ion-exchange column by inductively coupled plasma mass spectrometry (ICP-MS) (X serise ICP-MS, Thermo Fisher Scientific Ico., USA). All samples were diluted with 1 mol·L⁻¹ HNO₃ because ICP-MS cannot handle high-concentration materials. The Pb_{input}/Pb_{output} ratio is known that measures stable Pb by ICP-MS.

1945

2.3.3 ²¹⁰Pb analysis

Recovery of ²¹⁰Pb (η C) is measured in remanent stable Pb by ICP-MS. In the samples that were kept for 6 months, ²¹⁰Po was analyzed in the same way it was ²¹⁰Po analyze was analyzed to same method of 2.2 ²¹⁰Po analyze. ²¹⁰Pb was calculated using the following formula [5-9] (S&I, 2014).

$${}^{210}A_{Po}^{m}(dpm) = \frac{{}^{210}N_2}{{}^{209}N_2} \times E^{\lambda_{Po}T_4} \times E^{-\lambda_{Pot}T_5} \times A_{spike}^2$$
[5]

$${}^{210}A_{\rm Pb}(\rm dpm) = \frac{{}^{210}A_{\rm Po}^{\rm m}}{(1 - E^{-\lambda_{\rm Po}T_6})}$$
[6]

$${}^{210}\text{A'}_{Pb}(\text{dpm}) = \frac{{}^{210}\text{A}_{Pb}}{\eta\text{C}}$$
[7]

$$^{210}A_{Pb-insitu}(dpm) = {}^{210}A'_{Pb} \times E^{\lambda_{Pb}T_7}$$
[8]

 $^{210}A_{Po}^{m}$ was known to express the ^{210}Po emitted between the plating time and counting time. $^{210}A_{Pb}$ represents the emitted ^{210}Pb to ^{210}Po ratio after the ion-exchange column based on $^{210}A_{Po}^{m}$. $^{210}A'_{Pb}$ represents how much ^{210}Pb was lost by the samples before the ion-exchange column, and is then corrected to the activity concentration of ^{210}Pb at the sampling time ($^{210}A_{Pb-insitu}$). Formula [9] is used to correct the sample weight and result uit.

2.4 Q/A and Q/C

The reference material IAEA-414 (Radionuclide in mixed fish from Irish Sea and North Sea) was determined simultaneously for Q/A and Q/C of this study. Each

sample was tested in triplicate. The certified value of the reference material is 2.1 \pm 0.4 Bq·(kg·dw)⁻¹. The measured activity concentration of the reference material in this study was within the certified value (Table 1).

Table 1 Analytical accuracy of ²¹⁰Po using the reference material, IAEA-414

(radionuclides in mixed fish from the Irish Sea and North Sea)

(unit: $Bq \cdot (kg \cdot dw)^{-1}$) Median (95% Confidence This study Remark interval) 2.1 (1.8 - 2.5) 2.2 \pm 0.1 n=3 (1.8 - 2.5) 1945

Chapter 3. Concentration factor of ²¹⁰Pb and ²¹⁰Po with the trophic level of phytoplankton, zooplankton, anchovy and mackerel in the coastal water of Jeju Island, Korea

3.1 The distribution of the activity concentration of ²¹⁰Po and ²¹⁰Pb in the coastal water and in plankton

The mean ²¹⁰Po concentrations measured in total phases and dissolved phases of seawater were 0.83 ± 0.004 and $0.75 \pm 0.06 \text{ mBq}\cdot\text{kg}^{-1}$, respectively, while the mean ²¹⁰Pb concentrations measured in total phases and dissolved phases of seawater were 1.27 ± 0.03 and $1.22 \pm 0.09 \text{ mBq}\cdot\text{kg}^{-1}$, respectively, in Jeju Island at the collection date (May 2014) (Table 2). This study, which measured the activity concentration of ²¹⁰Po and ²¹⁰Pb in the surface water of the coastal water around Jeju Island, was included in previous research that measured the activity concentration of ²¹⁰Po during the total phase (0.65 -)5 mBq·kg⁻¹) and dissolved phase (0.26 - 48 mBq·kg⁻¹) and of ²¹⁰Pb during the total phase (0.9 - 35 mBq·kg⁻¹) and the dissolved phase (0.3 - 38 mBq·kg⁻¹) in the surface water of the

coastal water around the Korean peninsula (Hong et al., 2008; Hong et al., 1999; Kim & Kim, 2014; Kim & Yang, 2004). The activity concentration of ²¹⁰Po for the total and dissolved phases in the East China Sea and the Yellow Sea were close to those found in the coastal water of Jeju Island (0.65 -)5 and 0.26 - 33 mBq·kg⁻¹, respectively), while the total-phase and dissolved-phase concentrations of ²¹⁰Pb were 0.9 - 35 and 1.13 - 38 mBq·kg⁻¹, respectively. These previous results include the results of this study (Nozaki et al., 1991).

 Table 2 The activity concentrations and distribution coefficients of ²¹⁰Po and ²¹⁰Pb in the coastal surface water around Jeju Island

$(unit : mBq \cdot kg^{-1})$

Seawater	Total	Dissolved	Particulate	K_d
²¹⁰ Po (± STD)	0.83 ± 0.004	0.75 ± 0.06	$0.08~\pm~0.06$	$1.9 \times 10^5 \pm 2.6 \times 10^5$
²¹⁰ Pb (± STD)	1.27 ± 0.03	1.22 ± 0.09	$0.05~\pm~0.06$	$6.6 \times 10^5 \pm 3.1 \times 10^4$
²¹⁰ Po/ ²¹⁰ Pb (± STD)	$0.66~\pm~0.02$	0.62 ± 0.07	1.79 ± 2.79	
	REAM	m	IL RS	
	No.			
	rom	1945	IN IN	
		लें। ठेः टा	07	

²¹⁰Po is relatively more scarce than ²¹⁰Pb, as the ²¹⁰Po/²¹⁰Pb ratio is 0.66 in the total phase and 0.62 in the dissolved phase. It is shown that removal of ²¹⁰Po is faster in the coastal water than ²¹⁰Pb in the coastal water, as ²¹⁰Po has a high distribution coefficient about the inorganic particles in marine ecosystems (Bacon et al., 1988; Sarin et al., 1994). The measured ²¹⁰Po/²¹⁰Pb ratio around Jeju Island included the Kuroshio current flow from of the southern side of the East China Sea (0.41-0.70) (Nozaki et al., 1991; Stewart et al., 2010; Tateda et al., 2003). The distribution coefficient (*Kd*) of ²¹⁰Po and ²¹⁰Pb in the seawater around Jeju Island was calculated by activity concentration of ²¹⁰Po (²¹⁰Pb) in the total and dissolved phases in the seawater of the study area and from the concentration of SPM following formula [10] (IAEA, 2004).

$$K_{d} = \frac{\left[(A_{Po(Pb)}^{T} - A_{Po(Pb)}^{D})/SPM\right]}{A_{Po(Pb)}^{D}}$$

[10]

where $A_{Po(Pb)}^{T}$ means activity concentration of ²¹⁰Po (²¹⁰Pb) during the total phase in the seawater around Jeju Island, and $A_{Po(Pb)}^{D}$ is the activity concentration of ²¹⁰Po (²¹⁰Pb) in the dissolved phase. SPM concentration in the study area was 0.56 mg·kg⁻¹. Formula [10] gives a *Kd* for ²¹⁰Po and ²¹⁰Pb of 1.9×10⁵ and 6.6×10⁵; the distribution coefficient of ²¹⁰Pb is 3 times higher than that for ²¹⁰Po (Table 2). The *Kd* of ²¹⁰Po and ²¹⁰Pb in seawater in the open ocean was 2.0×10⁷ and 1.0×10⁷, and for the marginal sea was 2.0×10⁷ and 1.0×10⁵ (IAEA, 2004). The *Kd* of ²¹⁰Po calculated in this study was 100 times lower than the IAEA ported value, while the *Kd* of ²¹⁰Pb is similar to that of the IAEA reported value. Finally, the *Kd* of ²¹⁰Po, which was studied during May and July around the Straits of Korea, showed

Collection @ kmou - 24 -

a lower range than the reported value at 2.5×10^5 to 4.1×10^6 (Hong et al., 2008).

The activity concentrations of ²¹⁰Po and ²¹⁰Pb in the phytoplankton (their primary producers in the marine ecosystem) are 116 ± 24 and 31 ± 6.6 Bq·(kg·ww)⁻¹, and in and zooplankton (their primary consumers) were 107 ± 2.1 and 6.89 ± 0.93 Bq·(kg·ww)⁻¹ (Table 3). Formula [11] was used to calculate the concentration factor (CF) of ²¹⁰Po and ²¹⁰Pb from the activity concentration of ²¹⁰Po and ²¹⁰Pb in the seawater (IAEA, 2004).

[11]

In this formula, $A_{Po(Pb)}^{sample}$ represents the activity concentration of ${}^{210}Po({}^{210}Pb)$ in each sample, and $A_{Po(Pb)}^{D}$ is the activity concentration of ${}^{210}Po({}^{210}Pb)$ in the dissolved phase of seawater. Concentration factors (CF) of ${}^{210}Po$ and ${}^{210}Pb$ were 1.5×10^5 and 2.6×10^4 in the phytoplankton and 1.4×10^5 and 5.7×10^3 in the zooplankton (Table 5). Previous research indicated a concentration change of ${}^{210}Po$ and ${}^{210}Pb$ with differences in plankton size; ${}^{210}Po$ did not change dependent on the difference in plankton size, but ${}^{210}Pb$ concentration relative to plankton that were of a size greater than 200 µm (Strady et al., 2015). The activity concentration of ${}^{210}Po$ in the phytoplankton measured in the bay of Jin-Hea was 99.5 - 139 Bq·(kg·ww)⁻¹, with a CF of 1×10^5 . The CF of ${}^{210}Po$ to phytoplankton in the bay of Jin-Hea and around Jeju Island were not significantly different from one another (Kim & Yang, 2004).

Collection @ kmou - 25 -
Table 3 The activity concentrations and concentration ratios of ²¹⁰Po and ²¹⁰Pb in the trophic levels of phytoplankton, zooplankton, anchovy and mackerel around Jeju Island

			((
Common name (Species name)	Part	²¹⁰ Po (± STD)	²¹⁰ Pb (± STD)	²¹⁰ Po/ ²¹⁰ Pb (± STD)
Phytoplankton		116 ± 24	31.4 ± 6.6	3.7 ± 1.1
Zooplankton		107 ± 2.1	$6.89~\pm~0.93$	15.5 ± 2.1
Anchovy (Engraulis japonius)	Whole body	264 ± 1	1.41 ± 0.52	187 ± 69
	Head	236 ± 19	1.36 ± 0.14	173 ± 22
	Muscle	115 ± 10	$0.58~\pm~0.18$	198 ± 64
	Internal organs	968 ± 160	$2.40~\pm~0.24$	$403~\pm~78$
	Muscle	0.8 ± 0.03	0.21 ± 0.05	$3.7~\pm~0.9$
Mackerel	Skin	2.9 ± 0.6	0.73 ± 0.13	3.9 ± 1.1
(Scomber japonicus)	Internal organs	30.1 ± 6.5	1.8 ± 0.5	16.5 ± 5.8
	Liver	66 ± 22	$2.46~\pm~0.35$	27 ± 10

(unit: $Bq \cdot (kg \cdot ww)^{-1}$)

3.2 The distribution of the activity concentration of ²¹⁰Po and ²¹⁰Pb in the anchovy and mackerel

According to National Fisheries Research & Development Institute, the anchovy (Engraulis japonicus) caught in the area around the north-west coast of Jeju Island was more than one year of age due to its 10 cm body size; the current may have driven it to the South Sea of Korea. Activity concentrations of ²¹⁰Po and ²¹⁰Pb in the anchovy (Engraulis japonicus) captured around Jeju Island were 264 ± 1 and $1.41 \pm 0.52 \text{ Bq} \cdot (\text{kg} \cdot \text{ww})^{-1}$, with the ²¹⁰Po value 187 times higher than the ²¹⁰Pb value (Table 3). Previous studies of activity concentrations of ²¹⁰Po in the anchovy have shown a diverse range from 24.9 to 281 Bg (kg ww)⁻¹ with those of ²¹⁰Pb in the anchovy ranging from 0.18 to 28.1 Bq·(kg·ww)⁻¹ (Aközcan, 2013; Çatal et al., 2012; Khan & Wesley, 2012; Lazorenko et al., 2002; Štrok & Smodiš., 2011). The activity concentration of ²¹⁰Po and ²¹⁰Pb in each part of the anchovy living around Jeju Island has a different concentration. ²¹⁰Po and ²¹⁰Pb concentrations in muscle were 115 ± 10 and 0.58 ± 0.18 Bq (kg ww)⁻¹, respectively; in the head, they were 236 ± 19 and 1.36 ± 0.14 Bg·(kg·ww)⁻¹, and in the internal organs 968 ± 160 and 2.40 ± 0.24 Bq (kg ww)⁻¹. The activity concentration of ²¹⁰Po in the anchovy is 2 times higher than in plankton. Concentration of ²¹⁰Po in internal organs was shown to be high- times higher than in muscle. ²¹⁰Po bio-magnification is evident along the trophic level of planktivorous anchovy. In contrast, the concentration of ²¹⁰Pb in the whole body and head were 5 times lower than in plankton. Concentration of ²¹⁰Pb in the internal organs is 3 times lower than plankton. It was shown that ²¹⁰Pb was lost at trophic levels.

Previous research has shown that the activity concentration of 210 Po in mackerel varies from 3.6 to 30.2 Bq·(kg·ww)⁻¹, as does the 210 Pb range (from 0.56 to 9.5

 $Bq \cdot (kg \cdot ww)^{-1}$; these variations depend on the sea area where these values are measured (Aközcan & Ugur, 2013; Aoun et al., 2015; Khan & Wesley, 2012). According to the National Fisheries Research & Development Institute, mackerel (Scomber japonicas) caught around the north-west coast of Jeju Island was over 2 years old, as its size was 30 cm long, 330 g average weight. Its appearance in the South Sea of Korea may reflect spawning migration. ²¹⁰Po and ²¹⁰Pb were analyzed in the mackerel of the upper trophic level (a higher trophic level than for the anchovy), and the mackerel as divided into muscle, skin, internal organs, and liver. The liver showed the highest concentration of 210 Po and 210 Pb, at 66.2 ± 21.9 and $2.46 \pm 0.35 \text{ Bq} \cdot (\text{kg} \cdot \text{ww})^{-1}$, respectively. The muscles had the lowest concentration of ²¹⁰Po and ²¹⁰Pb, at 0.80 \pm 0.03 and 0.21 \pm 0.05 Bq·(kg·ww)⁻¹, respectively, when compared to the other parts of the mackerel (Table 3). The activity concentrations of ²¹⁰Po and ²¹⁰Pb in the internal organs were 30.1 ± 6.5 and 1.82 \pm 0.51 Bq·(kg·ww)⁻¹, respectively, 50% to 70% lower than that in the liver. The activity concentrations of ²¹⁰Po and ²¹⁰Pb in the internal organs were 2.9 ± 0.6 and 0.73 ± 0.13 Bq·(kg·ww)⁻¹, respectively, 3.5 times higher than those of muscle. The activity concentration of ²¹⁰Po in mackerel muscle is 330 times lower than anchovy among the mackerel feed animal; the concentration of ²¹⁰Pb is 6.7 times lower than anchovy. In the anchovy, which is at a lower trophic level than the mackerel, the concentrations of both radionuclides were higher than in the mackerel liver, and also higher than they were for the highest ²¹⁰Po concentration in the internal organs of the mackerel.

Range of the ²¹⁰Po and ²¹⁰Pb in marine biota can change by taxonomic group, inhabited environment, and feed (Aközcan & Ugur, 2013; Alam & Mohamed, 2011b; Heyraud & Cherry, 1979). Fishes were classified by feed kind in the same habitat. The ranges of activity concentrations of ²¹⁰Po and ²¹⁰Pb in planktivorous fishes (measured in the muscles) was 23.1 - 0 and 0.6 - 39 Bq·(kg·ww)⁻¹, respectively. The ranges of activity concentration of ²¹⁰Po and ²¹⁰Pb in carnivorous

Collection @ kmou - 28 -

fishes were 0.8 - 16 and 0.2 - .6 $Bq (kg \cdot ww)^{-1}$ (both measured in muscle; Table 4) (Štrok & Smodiš, 2011; Suriyanarayanan et al., 2010; Musthafa & Krishnamoorthy, 2012; This study). Previous studies showed that planktivorous fishes have higher activity concentrations of ²¹⁰Po and ²¹⁰Pb than do carnivorous fishes. In a culture experiment of fish using different feed kinds (plankton and other kinds of feed), fishes that fed on plankton had higher activity concentrations of ²¹⁰Po than did those who consumed the other feed (Cherry et al., 1989).

 Table 4 Comparison of the activity concentrations and concentration ratios of ²¹⁰Po and ²¹⁰Pb in the planktivorous and carnivorous fish with those in other studies.

				(*: m	uscle) (unit: I	$3q(kg\cdot ww)$
C'h-	common	Species	T*	²¹⁰ Po	²¹⁰ Pb	²¹⁰ Po/ ²¹⁰ Pb
Site	name	name	Туре	(± STD)	(± STD)	(± STD)
Lebanese	Marbled spinefoot	Siganus Rivulatus	Р	140 ± 10	99 ± 4	1.4 ± 0.1
coastal	Common pandora	Pagellus Erythrinus	С	$4.6~\pm~0.8$	1.6 ± 0.1	$2.9~\pm~0.5$
East coast	Mozambique tilapia	Oreochromis mossambicus	D P/	81.6 ± 6.7	$2.0~\pm~0.6$	4.1 ± 1.3
of India	Fringescale sardinella	Sarcinella fumbriata	С	41.3 ± 3.1	0.7 ± 0.4	57.4 ± 2.9
Slovenian	European pilchard	Sardina pilchardus	Р	23.1 ± 0.9	1.1 ± 0.1	21.6 ± 2.8
coast	Flathead grey mullet	Mugil cephalus	С	8.2 ± 0.5	$0.3~\pm~0.1$	32.8 ± 17
South	Indian oil sardine*	Sardinella longiceps		190 ± 5	13 ± 1	14.6 ± 1.2
of India	Indian Salmon*	Eleutheronema tetradactylum	C	116 ± 7	1.0 ± 0.5	116 ± 58
Jeju Island	Japanese anchovy*	Engraulis japonicus	Р	115 ± 10	0.6 ± 0.2	198 ± 64
of Korea	Chub mackerel*	Scomber japonicus	С	$0.8~\pm~0.03$	$0.2~\pm~0.1$	3.7 ± 0.9

*Feeding type: P: Planktivore, C: Carnivore

⁽Lebanese coastal : Aoun et al., 2015; East coast of India: Musthafa and Krishnamoorthy, 2011; Slovenian coast: Strok and Smodis, 2011; South coast of India: Suriyanarayanan et al., 2010; Jeju island of Korea: This study)

3.3 Transferral of ²¹⁰Po and ²¹⁰Pb through the trophic levels

CFs of ²¹⁰Po at the trophic levels while tracking the phytoplankton, zooplankton, anchovy and mackerel around Jeju Island were highest in phytoplankton, at 1.5×10^5 . Zooplankton has a lower CF than did phytoplankton at 1.4×10^5 . The CF of ²¹⁰Po in the anchovy was 3.5×10^5 , several times higher than in phytoplankton. This results in the anchovy having higher concentrations of ²¹⁰Po than does plankton (Table 5; Fig. 4). The CF of ²¹⁰Po in anchovy muscle was similar to that of phytoplankton at 1.5×10^5 , but 8 to 9 times higher than that of phytoplankton in the internal organs at 1.3×10^6 ; ²¹⁰Po is highly concentrated in the internal organs due to the take feed. The CF of ²¹⁰Po of carnivorous mackerel on the upper trophic level (at a higher level than anchovy) was ten times to more than hundreds times lower than that of anchovy as 1.1×10^3 and 4.0×10^4 in the muscles and internal organs. The finding that planktivorous fish have higher concentrations of ²¹⁰Po than do carnivorous fish (as was shown by previously completed research) is important but not surprising, as anchovy (a planktivorous fish) has a high concentration of ²¹⁰Po in this study (Fowler 2011; Suriyanarayanan et al. 2010).

CF of ²¹⁰Pb to phytoplankton was 5 times lower than ²¹⁰Po with 2.6×10^4 . CF of ²¹⁰Pb to zooplankton was 25 times lower than ²¹⁰Po with 5.7×10^3 . Zooplankton is low concentration of ²¹⁰Po than ²¹⁰Pb than phytoplankton. In previous study on ²¹⁰Po/²¹⁰Pb ratio in the excrement of the zooplankton (2.2 ± 0.3) was higher than ²¹⁰Po/²¹⁰Pb ratio of the zooplankton through the feed (6), relatively. ²¹⁰Pb excreted better than ²¹⁰Po via excrescence of the zooplankton (Beasley et al., 1978). Zooplankton have lower concentrations ²¹⁰Pb than of ²¹⁰Po. Also, upon culture experiment of measurement residues for ²¹⁰Po and ²¹⁰Pb in euphausiids (*Meganyctiphanes norvegica*) after their feeding, it appeared that ²¹⁰Po in the body

Collection @ kmou - 31 -

was 44% of the total intake of ²¹⁰Po and passed ²¹⁰Po by excreta was 26% of total intake ²¹⁰Po, whereas ²¹⁰Pb in body was 3.5% of total intake ²¹⁰Pb and passed ²¹⁰Pb by excreta was 84% of total intake ²¹⁰Po. It is shown that ²¹⁰Pb passed to a greater extent than did ²¹⁰Po through the body (Stewart et al., 2005). CF of ²¹⁰Pb in the anchovy of the planktivorous fish was 5 times and 7 times lower than zooplankton as 2×10^3 and 4.8×10^2 in the whole body and muscle, as the excretion of ²¹⁰Pb in the anchovy is better. The CF of the ²¹⁰Pb to mackerel of the carnivore fishes was half that of anchovy – 7×10^2 in the muscles and similar to anchovy with 1.5×10^3 in the internal organs (Table 5).

Table 5 The concentration factors of ²¹⁰Po and ²¹⁰Pb in the trophic levels of phytoplankton,zooplankton, anchovy and mackerel around Jeju Island

Common name		CF			
(Species name)	Part	²¹⁰ Po (± STD)	²¹⁰ Pb (± STD)		
Phytoplankton		$1.5 \times 10^5 \pm 3.5 \times 10^4$	$2.6 \times 10^4 \pm 5.8 \times 10^3$		
Zooplankton	- 110	$1.4 \times 10^5 \pm 1.2 \times 10^4$	$5.7{\times}10^3~{\pm}~8.8{\times}10^2$		
	Whole body	$3.5 \times 10^5 \pm 2.8 \times 10^4$	$1.2 \times 10^3 \pm 4.3 \times 10^2$		
Anchovy	Head	$3.1 \times 10^5 \pm 3.5 \times 10^4$	$1.1 \times 10^3 \pm 1.4 \times 10^2$		
(Engraulis japonius)	Muscle	$1.5 \times 10^5 \pm 1.8 \times 10^4$	$4.8 \times 10^2 \pm 1.5 \times 10^2$		
	Internal organs	$1.3 \times 10^6 \pm 2.4 \times 10^5$	$2.0 \times 10^3 \pm 2.5 \times 10^2$		
	Muscle 194	$1.1 \times 10^3 \pm 9.5 \times 10^1$	$1.7{\times}10^2~{\pm}~4.4{\times}10^1$		
Mackerel (Scomber japonicus)	Skin Ol	$3.8 \times 10^3 \pm 8.8 \times 10^2$	$6.0 \times 10^2 \pm 1.1 \times 10^2$		
	Internal organs	$4.0 \times 10^4 \pm 9.1 \times 10^3$	$1.5 \times 10^3 \pm 4.3 \times 10^2$		

Fig. 4 The concentration factors of ²¹⁰Po and ²¹⁰Pb in phytoplankton, zooplankton, anchovy and mackerel around Jeju Island

Chapter 4. Annual effective dose of ²¹⁰Po from oysters and mussels

4.1 The activity concentration of ²¹⁰Po in oysters and mussels

1945

Table 6 shows the measured ²¹⁰Po labels in the edible soft tissue of samples collected from 5 regions along the Korean coast. Results for the specific activity of ²¹⁰Po in oysters ranged from 41.3 to 206 Bq·(kg·ww)⁻¹. The overall range for the specific activity with oysters caught along the western coast of Korea (yellow sea) (activity concentration of ²¹⁰Po: 158 ± 14 to 206 ± 10 Bq·(kg·ww)⁻¹), such as Seosan, was greater (and broader) than for the southern coast of Korea (activity concentration of ²¹⁰Po: 41.3 ± 3.7 to 55.8 ± 21.2 Bq·(kg·ww)⁻¹). Oysters captured along the coast of Korea were compared with the activities of ²¹⁰Po determined in other countries (Table 7). Tongyoung and Yeosu oysters showed activity concentrations 2 times higher than those observed in France and Taiwan, where the range was from 14.3 to 25.9 Bq·(kg·ww)⁻¹ (Connan et al., 2007; Lee & Wang, 2013), and oysters (*Crassostrea madrasensis*) inhabiting the east coast of India

Collection @ kmou - 35 -

were a different species compared to the oysters (*Crassostrea gigas*) prevalent in the bodies of water around Korea; however, their activity values were similar to those for oysters captured along the south coast of Korea (Satheeshkumar., 2016). The Slovenian oyster (*Ostrea edulis*) is another species with a similar range (56.7 to 124 Bq·(kg·ww)⁻¹) (Štrok & Smodiš, 2011). However, the activity concentrations of ²¹⁰Po in the oysters of the west sea of Korea were considerably higher than those shown in previous studies, where the observed range was from 110 ± 18 to 206 ± 10 Bq·(kg·ww)⁻¹.

The activity of ²¹⁰Po in the edible soft tissue of mussels in the Tongyoung and Yeosu was 46.7 \pm 0.7 to 42.9 \pm 3.2 Bq·(kg·ww)⁻¹. The radioactivity concentration of ²¹⁰Po in the mussels caught along the southern coast were similar to those in oysters (Table 6). The ²¹⁰Po activity observed in the mussels caught in 5 other countries (Croatia; India; Slovenia; Turkey; France) across different species showed a distribution across a very wide range of 22.1 to 776 Bq·(kg·ww)⁻¹ (Aközcan, 2013; Connan et al., 2007; Khan et al., 2014; Rani et al., 2014; Rožmarić et al., 2012; Štrok & Smodiš, 2011). The activity of ²¹⁰Po in the tissue of mussels in Turkey showed the highest range of values, of 332 to 776 Bq·(kg·ww)⁻¹, which was 10 times higher than the radioactivity concentration of ²¹⁰Po from mussels caught along the Southern coast (Aközcan, 2013). The mean activity of ²¹⁰Po in the mussel of Korea as 44.8 \pm 2.7 Bq·(kg·ww)⁻¹ was about twice as high as that observed in Croatia and India, which respectively showed radioactivity concentrations of has 22.1 and 31 Bq·(kg·ww)⁻¹ (Table 7) (Khan et al., 2014; Rožmarić et al., 2012).

Collection @ kmou - 36 -

 Table 6 Activity concentrations of ²¹⁰Po and ²¹⁰Pb in the soft tissues of the oysters and the mussels collected in Korean coast

(n=3) (unit: $Bq \cdot (kg \cdot ww)^{-1}$)

0.1	Oys	ter	Mussel		
Site	210 Po (± SD)	210 Pb (± SD)	²¹⁰ Po (± SD)	210 Pb (± SD)	
Seosan	$206~\pm~10$	$4.4~\pm~0.7$			
Boryeong	110 ± 18	3.4 ± 0.2			
Wando	158 ± 14	8.2 ± 7.1			
Yeosu	55.8 ± 21.2	2.7 ± 0.2	42.9 ± 3.2	$2.0~\pm~0.5$	
Tongyeong	41.3 ± 3.7	3.6 ± 0.4	46.7 ± 0.7	$4.2~\pm~0.3$	
	All.		1/2		
			35		
	0				

Table	7	Comparison	of ²	¹⁰ Po	activity	conce	ntrations	in	the	oysters	and	the	mussels	of
			ot	ther	countries	with	those of	f th	is st	tudy				

.

(unit:	Bq	(kg∙ww)	⁻¹)
--------	----	---------	-----------------

	Country	Species	²¹⁰ Po
	France	Crassostrea gigas	14.3 to 34
	Slovenia	Ostrea edulis	56.7 to 124.6
Oysters	Taiwan	Crassostrea gigas	25.9
	India	Crassostrea madrasensis	45.2
	Korea	Crassostrea gigas	41.3 to 206
	France	Mytilus edulis	156.2 to 275
	Slovenia	Mytilus galloprovincialis	78.7
	Croatia	Mytilus galloprovincialis	22.1 to 207
	Turkey	Mytilus galloprovincialis	332 to 776
Mussel		Perna indica	31 to 186
	India	Perna viridis	36 to 212
		Perna perna St III	320
	Korea	Mytilis coruscus	42.9 to 46.7

(Oyster: France [Connan et al., 2007]; Slovenia [Štrok & Smodiš, 2011]; Taiwan [Lee & Wang, 2013] India [Satheeshkumar., 2016] Korea [This study] Mussel: France [Connan et al., 2007] Slovenia [Štrok & Smodiš, 2011] Croatia [Rožmarić et al., 2012] Turkey [Aközcan, 2013] India [Khan et al., 2014; Rani et al., 2014] Korea [This study])

The activity concentration of ²¹⁰Po in marine biota can change by their habitat, feeding type, physiological process, and size (Alam & Mohamed, 2011b). The oyster filter feeder appeared to indicate that different activity concentrations existed of ²¹⁰Po in the bodies of the oysters according to the features of the suspended matter. In previous studies, oysters selectively fed with a preference for phytoplankton or random phytoplankton and inorganic matter (Ward et al., 1998; Nasr, 1984). The correlation between suspended particle matter (SPM) and chlorophyll-a (Chl-a), as an indirect indicator of plankton in the sea water around the site where the oysters were caught, was examined to determine the reason of the different activity concentration of ²¹⁰Po. The concentration of SPM and Chl-a was used during 11 years (from 2003 to 2013) in a national marine environmental monitoring system made by the Environmental Management Corporation (Marine Environment Information System (MEIS), 2003-2013) (Table 8). The concentration of ²¹⁰Po in oysters at each site from 2003 to 2013 maintained a trend similar to that of SPM of each November and of the average for the year (Fig. 5).

The activity concentration in oysters was shown to have a high positive correlation ($R^2=0.89$) with the SPM measured in November for the captured oysters. Further a high positive correlation also existed ($R^2=0.76$) with the SPM of the annual average of 11 years (Fig. 6). The reported in vivo half-life of the metallic elements in the oyster (*Crassostrea gigas*) was 23 to 60 days (Ozaki &Panietz, 1981). Consequently, it is interesting to note that the activity concentration of ²¹⁰Po, mainly reflecting radionuclide sorption onto suspended matter, was similar for the concentration of suspended matter at each site in November. The concentration of Chl-a, which was related with a growing oyster population as an indirect indicator of plankton in November ($R^2=0.62$), showed a low negative correlation with the activity concentration of ²¹⁰Po. Meanwhile, to gain knowledge about the characteristics of suspended matter in the seawater, we compared the concentration of SPM to the value of Chl-a per SPM (Chl-a·SPM⁻¹). SPM had a negative

Collection @ kmou - 39 -

correlation with Chl-a SPM⁻¹ (Fig. 7). It is indicated that the total concentration of the SPM contributed very little organic suspended matter to the re-suspended matter. Calvalho et al. (2011) reported that the activity concentration of ²¹⁰Po in the edible part of the oyster was correlated with the concentration of SPM; this activity concentration for ²¹⁰Po showed a stronger correlation with inorganic suspended matter than with Chl-a (an indirect indicator of plankton). The distribution coefficient (*Kd*) of ²¹⁰Po and ²¹⁰Pb in suspended matter, in contrast to seawater (2×10⁷), was higher than those in phytoplankton (7×10⁴) and zooplankton (3×10⁴) (IAEA, 2004). Consequently, the oysters that lived where there was a high content level for re-suspended matter among total suspended matter might have had a relatively high activity concentration of ²¹⁰Po.

	²¹⁰ Po	SPM $(mg \cdot L^{-1})$		Chl-a (nl-a ($\mu g \cdot L^{-1}$)	
	$(Bq \cdot (kg \cdot ww)^{-1})$	November	Year average	November	Year average	
Tongyeong	41.3 ± 3.7	6.9 ± 3.3	8.2 ± 3.1	2.7 ± 1.3	4.1 ± 0.8	
Yeosu	55.8 ± 21.2	$8.5~\pm~5.0$	10 ± 4	2.4 ± 1.3	$4.0~\pm~1.5$	
Wando	158 ± 14	18 ± 21	22 ± 20	2.4 ± 2.2	$2.5~\pm~1.5$	
Boryeong	110 ± 18	10 ± 7	12 ± 4	1.8 ± 0.9	9.1 ± 6.7	
Seosan	206 ± 10	17 ± 14	18 ± 5	1.2 ± 0.7	$2.4~\pm~1.1$	
	ANN THE MAR	1945 õ# OF 1	ASI AND			

 Table 8 Activity concentrations of ²¹⁰Po in the soft tissue of oysters and concentrations of suspended particulate matter in the surface water of sampling areas (MEIS, 2003-2013)

Fig. 5 Each site of activity concentrations of ²¹⁰Po in the soft tissues of oysters and concentrations of suspended particulate matter (SPM) in the surface water of sampling areas observed in November and across four seasons from 2003 to 2013 (MEIS, 2003-2013)

Fig. 6 Correlation between the activity concentrations of ²¹⁰Po in the soft tissues of oyster and the concentrations of suspended particulate matter (SPM) in the surface water of sampling areas observed in November and across four seasons from 2003 to 2013 (MEIS, 2003-2013)

Fig. 7 Correlation between the concentrations of suspended particulate matter (SPM) and the ratios of the concentrations of chlorophyll-a (Chl-a) to the SPM (Chl-a·SPM (×10⁻³)) in the surface water of sampling areas observed in November and across 4 seasons from 2003 to 2013 (MEIS, 2003-2013)

4.2 Assessment of effective dose

The intake of ²¹⁰Po for humans caused by ingestion of oysters collected in Korea was calculated. Each isotope has a different change efficiency Becquerel (Bq) to Sievert (Sv) in organ. ²¹⁰Po change efficiency via ingestion was 1.2×10^{-6} Sv·Bq⁻¹ (IAEA, 2011). In Korea, the adult annual intake of oysters and mussels were 507 and 117 g·yr⁻¹; this estimate is based on primitive data in 2013 from the Korea Centers for Disease Control and Prevention. The annual effective dose via ingestion of ²¹⁰Po in oysters and mussels from the coast of Korea was calculated by the following formula [12].

AED
$$(Sv \cdot yr^{-1}) = CE \times I \times C$$
 [12]

In [12], AED is the annual effective dose from foods; CE_{Po210} is ²¹⁰Po internal dose co-efficiency change Bq to Sv $(1.2 \times 10^{-6} \text{ Sv} \cdot \text{Bq}^{-1})$ (IAEA, 2011); I_{Po210} is amount of ingestion to food per year per capita (kg·yr⁻¹) (primitive data in 2013 from the Korea Centers for Disease Control and Prevention); C_{Po210} is the result of ²¹⁰Po activity concentration in this study (Bq·kg⁻¹) (Table 6). The annual effective dose of ²¹⁰Po via oysters and mussels was compared with that of previous studies, and was shown to have a wide range in other countries Annual effective dose of ²¹⁰Po via oyster and mussel in other countries was shown to a wide range (Table 9). The annual effective dose of ²¹⁰Po via oysters in Korea (21 - 104 µSv·y⁻¹) can be compared with those of Taiwan (41 µSv·yr⁻¹) (Lee & Wang, 2013). However, the annual effective dose of ²¹⁰Po via oysters in Korea was over 10 times higher than those of France (10 - 24 µSv·yr⁻¹) and India (12.7 µSv·yr⁻¹) (Connan et al., 2007; Khan et al., 2014; Rani et al., 2014).

Collection @ kmou - 45 -

 Table 9 Comparison of annual effective doses of ²¹⁰Po from the ingestion of mussel and oysters in other countries with this study.

· · ·	-h
(unit:	uSv vr)

	Country	Species	Annual effective dose
	France	Crassostrea gigas	10 - 24
	Taiwan	Crassostrea gigas	41
Oysters	India	Crassostrea madrasensis	12.7
	Korea	Crassostrea gigas	21 - 104
	France	Mytilus edulis	50
	Slovenia	Mytilus galloprovincialis	8.5
	Croatia	Mytilus galloprovincialis	53 - 497
Mussal	Turkey	Mytilus galloprovincialis	1,992 - 4,332
Mussel	1	Perna indica	5.1 - 30.5
	India	Perna viridis	6.1 - 34.9
		Perna perna	1728
	Korea	Mytili scoruscus	5.01 - 5.46

(Oyster: France [Connan et al., 2007]; Slovenia [Štrok & Smodiš, 2011]; Taiwan [Lee & Wang, 2013] India [Khan et al., 2014] Korea [This study] Mussel: France [Connan et al., 2007] Slovenia [Štrok & Smodiš, 2011] Croatia [Rožmarić et al., 2012] Turkey [Aközcan, 2013] India [Khan et al., 2014; Rani et al., 2014] Korea [This study])

Collection @ kmou - 46 -

The compared annual effective dose of ²¹⁰Po via mussels ranged from 5.01 to 5.46 μ Sv·y⁻¹ compared with those of previous studies showing a range from 5.1 to 4,332 μ Sv·y⁻¹; the annual effective dose of ²¹⁰Po via mussels in the Korea was relatively low (Aközcan, 2013; Connan et al., 2007; Štrok & Smodiš, 2011; Rožmarić et al., 2012; Khan et al., 2014; Rani et al., 2014; This study). The annual effective dose of ²¹⁰Po via mussels along the southern coast of India and Slovenia also was within a low range of 5.1 - 8.5 μ Sv·y⁻¹, similar to those of Korea (Štrok & Smodiš, 2011; Khan et al., 2014); however, in Turkey the range from 1,192 to 4,332 μ Sv·y⁻¹ was a hundred times higher than that of Korea (Aközcan, 2013). That resulted from the high activity concentration of ²¹⁰Po in the mussels in these seas.

The reported annual effective dose of ²¹⁰Po in Korean adults through the intake of all food was 269 µSv·y⁻¹; 80% of this was attributable to seafood intake (Lee et al., 2009). Korean adults were exposed to an annual effective dose of ²¹⁰Po of 76 \pm 42 µSv·yr⁻¹ from only the consumption of oysters and mussels, which is based on annual average ingestion of oysters and mussels in Korea. This amount represented 28±16% an annual effective dose of ²¹⁰Po taken in via all food, and 35±19% according to annual effective dose of ²¹⁰Po from the consumption of seafood. The average annual effective dose of ²¹⁰Po in Korean adults from the intake of oysters and mussels was very high when one considers that oysters and mussels consisted of 3% of the total amount of seafood consumed by Korean adults. Meanwhile, the recommended CF of ²¹⁰Po contrasted with seawater for mollusks and crustaceans is 2.0×10^4 , and for fish and seaweed is 2.0×10^3 (IAEA, 2004). However, the activity concentrations of ²¹⁰Po in oysters was different by the site, and the average annual effective dose of ²¹⁰Po for Korean adults via seafood intake can vary according to the site of capture and the type of seafood. Given this, the average annual effective dose of ²¹⁰Po via seafood intake was rated accurately due to the high concentration of ²¹⁰Po in seafood.

Collection @ kmou - 47 -

Chapter 5. Conclusions

AINE AND OCEAN

The activity concentrations of ²¹⁰Po and ²¹⁰Pb within the trophic levels of phytoplankton, zooplankton, anchovy and mackerel in the coastal waters of Jeju Island were determined, and their accumulation along the trophic levels were studied in May 2014. The activity concentrations of ²¹⁰Po in the corrected total phase and dissolved phase of seawater were measured as 0.83 ± 0.004 and $0.75 \pm$ 0.06 mBq·kg⁻¹, and for ²¹⁰Pb were measured to 1.27 ± 0.03 and 1.22 ± 0.09 mBq·kg⁻¹. The concentration of ²¹⁰Pb was 1.5 times higher than ²¹⁰Po. The CFs of ²¹⁰Po and ²¹⁰Pb contrasted with seawater to phytoplankton were 1.5×10⁵ and 2.6×10^4 , respectively; the CF of ²¹⁰Po was 5 times higher. The CF of ²¹⁰Po compared to zooplankton was similar to the CF of ²¹⁰Po to phytoplankton, whereas the CF of ²¹⁰Pb compared to zooplankton was 5 times lower. The CF of ²¹⁰Po to anchovy was over 10 times higher than for zooplankton. The CF of ²¹⁰Po compared to upper-trophic level mackerel was one hundred times lower than for the anchovy. The CF of ²¹⁰Po to anchovy and mackerel internal organs is 8 times to 38 times higher than those of muscle, and ²¹⁰Po is highly concentrated in the internal organs.

Collection @ kmou - 48 -

In the phytoplankton-zooplankton-anchovy trophic levels, the CF of 210 Pb was decreased by five times along the trophic level in order, and in anchovy-mackerel was decreased by 30% to 70%. (Fig. 8). The concentration factor ratio between 210 Po and 210 Pb (CF(210 Po)/CF(210 Pb)) increased 5 to 12 times under the trophic level step of phytoplankton-zooplankton-anchovy, but decreased over 10 times under the trophic level step of anchovy to mackerel (Fig. 9).

Fig. 8 The relative concentration factors in zooplankton, anchovy and mackerel to the concentration factors of ²¹⁰Po and ²¹⁰Pb in phytoplankton around Jeju Island.

Relative concentration factor: Po(Pb)RA_{plk}=(CF of ²¹⁰Po(Pb) in marine biota)(CF of ²¹⁰Po(Pb) in phytoplankton)⁻¹

Collection @ kmou

Fig. 9 The ratios of ²¹⁰Po and ²¹⁰Pb concentration factors in phytoplankton, zooplankton, anchovy and mackerel around Jeju Island

The activity concentrations of ²¹⁰Po in the soft tissues of oysters and mussels collected along the Korean coast were 41.3 ± 3.7 to 206 ± 10 Bq·(kg·ww)⁻¹ and 42.9 ± 3.2 to 46.7 ± 0.7 Bq·(kg·ww)⁻¹, respectively. The activity concentrations of ²¹⁰Po in oysters were different according to the site where they were captured, as oysters from the southwest coast of Korea have a higher activity concentration of ²¹⁰Po than do oysters caught along the west coast. The activity concentration of ²¹⁰Po in oysters is positively correlated with concentrations of SPM. Specifically, the correlation between concentration of ²¹⁰Po and the annual mean concentration of SPM (R²=0.76) was lower than the correlation between concentration of ²¹⁰Po and the annual mean concentration of ²¹⁰Po and the present study. These findings indicate that the concentration of ²¹⁰Po in the edible part of oyster was affected by/due to the inorganic suspended matter.

The annual effective dose of ²¹⁰Po via oyster and mussel intake was in the range of 5.01 to 104 μ Sv·vr⁻¹. The annual effective dose and radioactivity concentrations from the Korean coast for ovsters $(21 - 104 \mu Sv \cdot vr^{-1})$ were higher than those in other countries excepting Taiwan and France. The annual effective dose via mussels was 5.01 - 5.46 μ Sv·yr⁻¹, 10 to 20 times lower than the annual effective dose via oysters in this study. When comparisons are drawn between the annual effective dose via mussels in Korea and in other countries, the annual effective dose of ²¹⁰Po via mussels in the South coast of India and Slovenia is in a low range from $5.1 - 8.5 \text{ µSv} \cdot \text{yr}^{-1}$, similar with those of Korea. The average annual effective dose of 210 Po in the Korean adult via intake of oysters and mussels was 76 ± 42 μ $Sv \cdot vr^{-1}$ was 28 ± 16% according to annual effective dose of ²¹⁰Po about the Korean adult via intake of all food, and $35 \pm 19\%$ according to the annual effective dose of ²¹⁰Po in Korean adults via. The average annual effective dose of ²¹⁰Po in Korean adults that was attributable to lobster and oyster was very high, allowing for oyster and mussel consumption in Korea that comprises 3% of Korea's annual food intake.

Collection @ kmou - 52 -

Finally, more data are needed on natural radionuclides in seafood from around the Korean peninsula to fully assess annual the effective dose of natural radionuclides in terms of its impact on good. In this study it appears unlikely that the pelagic biota around Jeju Island are exposed to a radiation concentration different from that affecting animals in coastal or deep-sea environments.

Acknowledgements

짧기도 하고 길기도한 2년 반의 석사생활을 마무리하며 드디어 감사의 글을 적을 수 있게 되었습니다. 많은 분들의 도움이 없었다면 결코 해낼 수 없었을 것입니다. 이 글을 쓰기 전 생각에 잠겨 처음 가졌던 마음가짐, 이곳 방사능센 터에서의 생활이 주마등처럼 스쳐지나 갔습니다. 기숙사에 나와 살면서 몸도 마음도 많이 힘들었지만 다른 사람들에 비해 꽤나 즐겁고 유쾌하게 보냈던 것 같습니다. 같이 있었던 현미언니, 희영언니, 미연언니, 혜은언니 덕분입니다.

원래 생명공학을 전공했던 제가 아무것도 모르고 처음 방사능이라는 생소하 고 어려운 주제를 공부하면서 '내가 과연 잘 할 수 있을까..'라는 고민을 수도 없이 했었습니다. 하지만 용기와 희망을 주신 홍기훈 원장님 덕분에 새로운 세 계를 알게 되었고, 많이 부족한 저를 참고 격려해주시며 이렇게 지도해주신 김 석현 지도교수님 덕분에 흥미와 관심이 생겼습니다. 감사합니다. 그리고 초반에 아무것도 모르고 논문을 쓰기 시작하면서 제가 많이 괴롭히고 시간을 뺏어도 친절히 답해주신 최진영 박사님 감사합니다. 모자란 저를 심사해주신 김동선 박사님, 유옥환 박사님 감사합니다.

우리 404호 식구들 타지생활을 하며 서로 힘이되 주었던 아름언니, 예슬이, 주영이 연구소생활에 있어 저에게 최고의 선물 이였습니다. 그리고 항상 투덜 거리고 우는 소리에도 웃으며 대답해준 웃는 모습이 아름다운 희진이 고맙습니 다. 항상 내편이 되어준 우리가족들 사랑합니다! 앞으로도 화목하고 밝은 가족 으로 갑시다.

제가 언급하진 않았습니다만, 항상 모자란 저를 지도해주신 여러 박사님들, 그리고 연구소, 학교, 주변분들 감사드립니다. 앞으로 멋진 연구자가 될 수 있 도록 노력하겠습니다. 저를 걱정해주시고 응원해주셨던 많은 분들 감사합니다. 항상 초심을 잃지 않고 열심히 사는 사람 되겠습니다.

References

- Aközcan, S., 2013. Levels of ²¹⁰Po in some commercial fish species consumed in the Aegean Sea coast of Turkey and the related dose assessment to the coastal population. *Journal of Environmental Radioactivity*, 118, pp.93-95.
- Aközcan, S., & Ugur, A., 2013. Activity levels of ²¹⁰Po and ²¹⁰Pb in some fish species of the Izmir Bay (Aegean Sea). *Marine Pollution Bulletin*, 66, pp.234-238.
- Alam, L., & Mohamed, C.A.R., 2011a. Natural radionuclide of ²¹⁰Po in the edible seafood affected by coal-fired power plant industry in Kapar coastal area of Malaysia. *Environmental Health*, 10, pp.43.
- Alam, L., & Mohamed, C.A.R.. 2011b. A mini review on bioaccumulation of ²¹⁰Po by marine organisms. *International Food Research Journal*, 18, pp.1-10.
- Anderson, D.M., Glibert, P.M., & Burkholder, J.M. 2002. Harmful Algal Blooms and Eutrophication: Nutrient Sources, Composition, and Consequences. *Estuaries*, 25(4B), pp.704-726.
- Aoun, M., Samad, O.E., Khozam, R.B., & Lobinski, R., 2015. Assessment of committed effective dose due to the ingestion of ²¹⁰Po and ²¹⁰Pb in consumed Lebanese fish affected by a phosphate fertilizer plant. *Journal of Environmental Radioactivity*, 140, pp.25-29.
- Argonne National Laboratory Environmental Science Division (ANL), 2007. Radiological and Chemical Fact Sheets to Support Health Risk Analyses for Contaminated Areas, USA:Argonne National Laboratory Environmental Science Division.
- Bacon, M.P., Belastock, R.A., Tecotzky, M., Turekian, K.K., & Spencer, D.W., 1988. Lead-210 and polonium-210 in ocean water profiles of the continental shelf and slope south of New England. *Continental Shelf Research*, 8, pp.841-853.

Bacon, M.P., Spencer, D.W., & Brewer, P.G., 1976. ²¹⁰Pb/²²⁶Ra and ²¹⁰Po/²¹⁰Pb disequilibria

in seawater and suspended particulate matter. *Earth and Planetary Science Letters*, 32, pp.277-296.

- Beasley, T.M., Heyraud, M., Higgo, J.J.W., Cherry, R.D., & Fowler, S.W., 1978. ²¹⁰Po and ²¹⁰Pb in Zooplankton Fecal Pellets. *Marine Biology*, 44, pp.325-328.
- Carvalho, F.P., 2011. Polonium(²¹⁰Po) and lea(²¹⁰Pb) in marine organisms and their transfer in marine food chains. *Journal of Environmental Radioactivity*, 102, pp.462-472.
- Carvalho, F.P., Oliveira, J.M., & Malta, M., 2011. Radionuclides in deep-sea fish and other organisms from the North Atlantic Ocean. *ICES Journal of Marine Science*, 68(2), pp.333-340.
- Çatal, E.M., Ugur, A., Özden, B., & Filizok, I., 2012. ²¹⁰Po and ²¹⁰Pb variations in fish species from the Aegean Sea and the contribution of ²¹⁰Po to the radiation dose. *Marine Biology*, 64, pp.801-806.
- Cherry, R.D., & Heyraud, M., 1981. Polonium-210 content of marine shrimp: variation with biological and environmental factors. *Marine Biology*, 65, pp.167-175.

1945

- Cherry, R.D., Heyraud, M., & James, A.G., 1989. Diet Prediction in Common Clupeoid Fish Using Polonium-210 Data. *Journal of Environmental Radioactivity*, 10, pp.47-65.
- Cherry, R.D., & Shannon, L.V., 1974. The alpha radioactivity of marine organisms. *Atomic Energy Review*, 12(1), pp.3-45.
- Connan, O., Germain, P., Solier, L., & Gouret, G., 2007. Variations of ²¹⁰Po and ²¹⁰Pb in various marine organisms from Western English Channel: contribution of ²¹⁰Po to the radiation dose. *Journal of Environmental Radioactivity*, 97, pp.168-188.
- Figgins, P,E,, 1961. *The Radiochemistry of Polonium*. U.S. Atomic Energy Commission: USA.
- Fowler, S.W., 2011. ²¹⁰Po in the marine environment with emphasis on its behaviour within the biosphere. *Journal of Environmental Radioactivity*, 102, pp.448-461.

- GEOTRACES Standards and Intercalibration (S&I), 2014. Sampling and sample-handling Protocols for GEOTRACES Cruises, UK:S&I.
- Goldberg, D.E., Koide, M., Hodge, V., Flegal, A.R., & Martin, J., 1983. U.S. Mussel Watch: 1977-1978 Results on Trace Metals and Radionuclides. *Estuarine, Coastal and Shelf Science*, 16, pp.69-93.
- Heyraud, M., & Cherry, R.D., 1979. Polonium-210 and Lead-210 in Marine Food Chains. *Marine Biology*, 52, pp.227-236.
- Holtzman, R.B., 1996. Natural levels of lead-210, polonium-210 and radium-226 in humans and biota of the Arctic. *Nature*, 210, pp.1094-1097.
- Hong, G-H., Kim, Y-I., Baskaran, M., Kim, S-H., & Chung, C-S., 2008, Distribution of ²¹⁰Po and Export of Organic Carbon from the Euphotic Zone in the Southwestern East Sea (Sea of Japan). *Journal of Oceanography*, 64, pp.277-292.
- Hong, G-H., Park, S-K., Baskaran, M., Kim, S-H., Chung, C-S., et al., 1999. Lead-210 and Polonium-210 in the winter well-mixed turbid waters in the mouth of the Yellow Sea. *Continental Shelf Research*, 19, pp.1049-1064.
- International Atomic Energy Agency (IAEA), 2004. Sediment Distribution Coefficients and Concentration Factors for Biota in the Marine Environment, Austria:IAEA.
- International Atomic Energy Agency (IAEA), 2011. Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards, Austria:IAEA.
- Karali, T., Olmez, S., & Yener, G., 1996. Study of spontaneous deposition of ²¹⁰Po on carious metals and application for activity assessment in cigarette smoke. *Applied Radiation and Isotopes*, 47, pp.409-411.
- Khan, M.F., Wesley, S.F., & Rajan, M.P. 2014. Polonium-210 in marine mussels (bibalve molluscs) inhabiting the Southern coast of India. *Journal of Environmental Radioactivity*, 138, pp.410-416.

- Khan, M.F., & Wesley, S.G., 2012. Radionuclides in resident and migratory fishes of a wedgy bank region: Estimation of dose to human beings, South India. *Marine Pollution Bulletin*, 64, pp.2224-2232.
- Kim, T-H., & Kim, I., 2014. Importance of Colloidal ²¹⁰Pb and ²¹⁰Po in Ground water of Subterranean Estuary. *Journal of the Korean Society of Oceanography*, 19(2), pp.125-130. (in Korean)
- Kim, Y., & Yang, H-S., 2004. Scavenging of ²³⁴Th and ²¹⁰Po in surface water of Jinhae Bay, Korea during a red tide. *Geochemical Journal*, 38, pp.505-513.
- Kim, M.J., Youn, S.H., Kim, J-Y., & Oh, C-H., 2013. Feeding Characteristics of the Japanese Anchovy, *Engraulis japonicas* according to the Distribution of Zooplankton in the Coastal Waters of Southern Korea. *Korean Society of Environmental Biology*, 31(4), pp.275-287. (in Korean)
- Korea institute of Ocean Science & Technology (KIOST), 2005. Studies on the development of marine ranching program in the East, West and Jeju Coast of Korea: Buk-Jeju marine ranching, Korea: KIOST. (in Korean)

1945

- Lazorenko, G.E., Polikarpov, G.G., & Boltachev, A.R., 2002. Natural Radioelemet Polonium in Primary Ecological Groups of Black Sea Fishes. *Russian Journal of Marine Biology*, 28(1), pp.52-56.
- Lee, C.W., Kang, M.J., Lee, W., Choi, G.S., Cho, Y.H., et al., 2009. Assessment of ²¹⁰Po in foodstuffs consumed in Korea. *Journal of Radioanalytical and Nuclear Chemistry*, 44(1), pp.80-88.
- Lee, H.M., Hong, G.H., Baskaran, M., Kim, S.H., & Kim, Y.I., 2014. Evaluation of plating conditions for the recovery of ²¹⁰Po on a Ag planchet. *Applied Radiation and Isotopes*, 90, pp.170-176.
- Lee, H.W., & Wang, J.J., 2013. Annual dose of Taiwanese from the ingestion of ²¹⁰Po in oysters. *Applied Radiation and Isotopes*, 90, pp.170-176.

- Lubna, A., Nik, A.N.A., Afiza, S.S., & Mohamed, C.A.R., 2011. A study on the Activity Concentration of Po-210 in the Marine Environment of the Kapar Coastal area. *Journal of Tropical Marine Ecosystem*, 1, pp.1-8.
- Marine Environment Information System (MEIS), 2003-2015. 해양환경측정망 연안 및 근해 2015년 관측자료 원본 [Online](Updated 2 February 2012 28 January 2016) Available at: http://www.mesis.go.kr [Accessed 13 February 2016].
- Musthafa, M.S., & Krishnamoorthy, R., 2012. Estimation of ²¹⁰Po and ²¹⁰Pb and its dose to human beings due to consumption of marine species of Ennore Creek, South India. *Environmental Monitoring and Assessment*, 184, pp.6253-6260.
- Nasr, D.H., 1984. Feeding and growth of the pearl oyster *Pinctada margaritifefa*(L.) in Dongonab Bay, Red Sea. *Hydrobiologia*, 110, pp.241-245.
- National Fisheries Research and Development Institute (NFRDI), 2010. Korean Coastal and Offshore Fishery Census, Korea: NFRDI. (in Korean)
- Nozaki, Y., Tsubota, H., Kasemsupaya, V., Yashima, M., & Ikuta, N., 1991. Residence times of surface water and partible-reactive ²¹⁰Pb and ²¹⁰Po in the East China and Yellow seas. *Geochimica et Cosmochimica Acta*, 55, pp.1265-1272.
- Ota, T., Sanada, T., Kashiwara, Y., Morimoto, T., & Sato, K., 2009. Evaluation For Committed Effective Dose Due to Dietary Food by the Intake for Japanese Adults. *Hoken Butsuri*, 279(2), pp.519-522.
- Ozaki, R.K., & Panietz, M.H., 1981. Depuration of twelve trace metals in tissues of the oysters *Crassostrea gigas* and C. *Virginica. Marine Pollution Bulletin*, 63, pp.113-120.
- Pietrzac-Flis, Z., & Skowronska-Smolak, M., 1995. Transfer of ²¹⁰Pb and ²¹⁰Po to plants via root system and above-ground inception. *Science of the Total Environment*, 162, pp.139-147.
- Pietrzak-Flis, Z., Chrzanowski, E., & Dmbinska, S., 1997. Intake of ²²⁶Ra, ²¹⁰Pb and ²¹⁰Po with food in Poland. *Science of the Total Environment*, 203, pp.157-165.

- Preiss, N., Melieres, M-A., & Pourchet, M., 1996. A compilation of data on lead-210 concentration in surface air and fluxes at the air-surface and water-sediment interfaces. *Journal of Geophysical research*, 101(D22), pp.28847-28862.
- Rainbow, P.S., 1995. Biomonitoring of Heavy Metal Availability in the Marine Environment. *Marine Pollution Bulletin*, 31, pp.4-12.
- Rani, L.M., Jeevaram, R.K., Kannan, V., & Govindaraju, M., 2014. Estimation of Polonium-210 activity in marine and terrestrial samples and computation of ingestion dose to the public in and around Kanyakumari cast, India. *Journal of Radiation Research and Applied Sciences*, 7, pp.207-213.
- Rožmarić, M., Rogić, M., Benedik, L., Štrok, M., Barišic, D., et al., 2012. ²¹⁰Po and ²¹⁰Pb activity concentrations in *Mytilus galloprovincialis* from Croatian Adriatic coast with the related dose assessment to the coastal population. *Chemosphere*, 87, pp.1295-1300.
- Samad, O.E., Baydoun, R., & Jeaid, H.E., 2010. Activity concentrations of Polonium-210 and Lead-210 in Lebanese. *Lebanese Science Journal*, 11(2), pp.39-45.
- Sarin, M.M., Krishnaswami, S., Ramesh, R., & Somayajulu, B.L.K., 1994. ²³⁸U decay series nuclides in the northeastern Arabian Sea: scavenging rates and cycling processes. *Continental Shelf Research*, 14, pp.251-265.
- Scott, B.R., 2007. Health Risk Evaluations for Ingestion Exposure of Humans to Polonium-210. *Dose-Response*, 5, pp.94-122.
- Sivakumar, R., 2014. An assessment of the ²¹⁰Po ingestion dose due to the consumption of agricultural, marine, fresh water and forest foodstuffs in Gudalore (India). *Journal of Environmental Radioactivity*, 137, pp.96-104.
- Skwarzec, B., & Falkowski, L., 1988. Accumulation of Po-210 in Baltic invertebrates. *Journal of Environmental Radioactivity*, 8, pp.99-109.
- Stewart, G.M., Fowler, S.W., Teyssie, J-L., Cotret, O., Cochran, J.K., et al., 2005. Contrasting transfer of polonium-210 and lead-210 across three trophic levels in marine

plankton. Marine Ecoogy Progress Series, 209, pp.27-33.

- Stewart, G.M., Moran, S.B., & Lomas, M.W., 2010. Seasonal POC fluxes at BATS estimated from ²¹⁰Po deficits. *Deep Sea Research Part I: Oceanographic Research Papers*, 57, pp.113-124.
- Strady, E., Harmelin-Vivien, M., Chiffoleau, J.F., Veron, A., Tronczynski, J., et al., 2015. ²¹⁰Po and ²¹⁰Pb trophic transfer within the phytoplankton-zooplankton-anchovy/sardine food web: a case study from the Gulf of Lion (NW Mediterranean Sea). *Journal of Environmental Radioactivity*, 143, pp.141-151.
- Štrok, M, & Smodiš, B, 2011. Levels of ²¹⁰Po and ²¹⁰Pb in fish and molluscs in Slovenia and the related dose assessment to the population. *Chemosphere*, 82, pp.970-976.
- Suh, H-L., Kim, S-S., Go, Y-B., Nam, K.W., Yun, S.G., et al., 1995. ²¹⁰Po Accumulation in the Pelagic Community of Yongil Bay, Korea. *Korean Journal of Fisheries and Aquatic Sciences*, 28(2), pp.219-226. (In Korean)
- Suriyanarayanan, S., Brahmanandhan, G.M., Samivel, K., Ravikumar, S., & Hameed, P.S., 2010. Assessment of ²¹⁰Po and ²¹⁰Pb in marine biota of the Mallipattinam ecosystem of Tamil Nadu, India. *Journal of Environmental Radioactivity*, 101, pp.1007-1010.
- Tateda, Y., Carvalho, F.P., Fowler, S.W., & Miquel, J-C., 2003. Fractionation of ²¹⁰Po and ²¹⁰Pb in coastal waters of the NW Mediterranean continental margin. *Continental Shelf Research*, 23, pp.295-316.
- United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), 2000. Sources and effects of Ionizing Radiation Volume1: Sources, United Nation:UNSCEAR.
- Ward, J.E., Levinton, J.S., Shumway, S.E., & Cucci, T., 1998. Particle sorting in bivalves: in vivo determination of the pallial organs of selection. *Marine Biology*, 131, pp.283-292.
- Yoon, S-J., Kim, D-H., Baeck, G-W., & Kim, J-W., 2008. Feeding habits of Chub Mackerel (*Scomber japonicas*) in the South Sea of Korea. *Korean Journal of Fisheries and Aquatic Sciences*, 41(1), pp.26-31. (in Korean)

