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ABSTRACT

In this paper, the method of parameter estimation of a mathematical constitutive model known as

the smooth elasto—plastic cap model is studied. To predict the response of the real soil using this
model, the eight parameters describing the constitutive equations have to be determined. First, an
experimental data is obtained from simple laboratory experiments such as one dimensional confined
compression test in a consolidometer with the Ottawa sand for the reference value. Then, the
numerical experiment is performed in the cap model with initial guessed parameters. The optimization

method is utilized to fit the model response to experimental data by minimizing the error between the

two responses.
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1. Introduction

From a theoretical point of view, the elasto-plastic
cap model (Seo, 2001) is particularly appropriate to
describe the soil behavior, because it allows the
control of dilatancy by means of moving hardening
cap. Once a mathematical constitutive law consistent
with the physical behaviors is derived, it is
necessary to identify and choose all significant
parameters that are needed to define it. Several
methods for determining the unknown parameters
have been presented in the literature. The standard
curve fitting method (Desai and Siriwardane, 1984;
Zaman et al, 1982) was used based on physical
insight into the experimental data. Although this
procedure provides a parameter fitting inspired by
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construction of the numerical model, it has some
drawbacks: (1) a large amount of conventional
experimental data is required; and (2) it is not
possible to use some existing non-conventional
experimental data. Gauss-Newton method (Matsui et
al., 1994) and Marquardt-Lenvenberg method ( Simo
et al, 1998) were also reported based on
optimization techniques. Gauss-Newton is simple and
uses a limited amount of test data, however there is
a major drawback. The coefficient matrix of
simultaneous equations can be singular or nearly
singular which leads to numerical instabilities. In
this if the objective function becomes
completely insensitive to any of the design variables
during the optimization iteration, and then the
matrix will be rank deficient. this study,
alternative constrained optimization procedure which
are using the existing optimization code such as
IDESIGN (Arora, 1997) embedded SQP algorithm. In
the simulation reported herein, a test of simple

case,
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laboratory experimental data using the Ottawa sand
for the reference value, are used to define the eight
material parameters (a, 8, W, D, x, H A and p)
that make up the cap model. The detailed parameter
estimation procedure will be explained as follows.

2. Description of the cap model

In this section, the basic constitutive equations of
a smooth three surface cap model (Seo, 2001) are
first summarized. Utilizing the assumption of small
deformation, the strain tensor admits the additive
elasto-plastic decomposition;

c=¢€®+¢€P (1)

where €, €° and €’ are the total, elastic, and plastic
strain tensors, respectively. The elastic response of
the material is assumed to be characterized by a
constant isotropic tensor C'= K1®1 + 2p1,,, such
that the incremental stress response of the material
is given by

o= C: (e—er) @

where K is the bulk modulus of the soil and i is
the shear modulus. In stress space, the elastic
domain is bounded by three distinct yield surfaces
which are invariants

functions of the two

I = tr(o) and |4, where s is the deviatoric part
of the stress tensor O (z'.e. s= Idwi o ) The three

surfaces comprising the yield surface intersect in a
smooth manner as shown in Figure 1.
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Fig. 1 Smooth, three-surface, two invariant yield function
for cap
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The form of the yield function,
fu(o,6) (m=1,2,3) are specified in terms of
functions F, & F ¢ and F, ¢+ which are respectively
called the Drucker-Prager envelope function, the

compression cap function, and the tension cap

function. The mathematical forms are

f1(0,41)=|7)f2—1‘1(11)£0 3)
f(o,qk)=lmif —F.(I,x) <0 (4)
f(0,q) =lIf - F.(,) <0 (5)

where: 7= s— ¢ and |hlf=[n:7]"2. As is customary
S denotes the deviatoric stress, and ¢ denotes a

purely deviatoric back
kinematic hardening. The specific forms of F,, F,

stress associated with

and F, are defined here as

F(I,)=a-6] If(k) < L < I (6)
F (I, k) =R*(x)—(,—K)* L < If(x) N
F,(I,)=R:-1? IL>1r 8)

In the preceding expressions, @ and & are basic
material constants.
Mohr-Coulomb  parameters to  Drucker-Prager

parameters have been provided as for example in
Chen and Saleeb(1982) as

Approximate translation from

V2e

_ /2tang
o= (1+4/3tan’p)"? @

and 6= (1+4/3tan’s)"?

Whereas and IP (k)

respectively, a fixed delimiting point between the
Drucker-Prager envelope and the tension cap, and
the Drucker-Prager envelope and the compression
cap. Specific expression for these points are

the entities 1,7 denotes,

IIT: acos (¢)sin (¢)
Ilcz K+ R(x)sin (¢)

(10)
11)

where ¢ =tan"'(8). As the compression cap surface
translates along the I, axis, the cap surface radius
R(x) changes as a function of the cap parameter K

as follows

R(k)=—rxsin (¢) + acos (¢) 12)
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The tension cap surface is circular. The center of
tension cap resides at I, =0, and the radius of the

surface is a constant R; which is expressed as

R, = acos (¢) (13)

The hardening law for this model derives from
the fact that the volumetric crush curve (plastic

volumetric strain eﬁ versus I; ) is assumed to be an

exponential of the form

e =— W[l—ezp{DX(x))] (14)
Differentiating equation with respect to K allows us

to obtain a variable tangent hardening modulus
h (k) for k as follows

’ _ de} _ exp(—DX

where X'=1—RF,(x);
possible plastic volumetric strain for the medium,
with the reference state being the material’s virgin
unloaded state; and D™' denotes the absolute value

of I, at which e'.100% of the medium’s original

W represents the maximum

crushable porosity remains. This nonlinear hardening
modulus A (x) is used to provide a nonlinear
incremental hardening law governing movement of
the cap parameter
K = h'(k)tr(e?) (16)
A purely deviatoric linear kinematic hardening law
is employed with this model, the rate form of which
is

q=HI, - €? (16)

where H is a constant plastic hardening modulus.

The flow rule for this model is associated, and
since multiple surfaces are potentially active at any
given instant, it takes Koiter's generalized form

ef= 2&"‘% a”
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3. Sequential quadratic programming

This method uses the Taylor series expansion to
liberalize a nonlinear optimization problem and
liberalized subprogram in transformed to a quadratic
program. While this method uses the basic idea as
the Gauss-Newton method, it treats the optimal
fitting process as a least square constrained
optimization problem. The constrains imposed on the
optimization problem are in the sense of physically
The formal statement of the
optimization problem is

meaningful bounds.

MIN J(b) = ;N! (u;— (b))

subjected to a < b < ¢ (18)

where N is number of observation; ¥; is observed

response from the laboratory experiments; Z s

response from constitutive model; 7 is J th data point;
b is design parameter vector; @ and ¢ are lower

and upper bounds of design variables. There exists
a wide variety of algorithms to solve the above
constrained  optimization To
implementing a such algorithms, the existing
optimization code IDESIGN (Arora, 1997) was used
here due to its robustness and generality. The
sequential quadratic programming algorithms can be
found in Arora (1989).

Since the magnitude of cap model parameters are
vastly different in size, it is important to normalize
the design variables for better performance of the

problems. avoid

optimization process. The normalized design
variables b; are defined as
xT.
b = 1
i< 19)

where Z; are the ™ original design variables and k;

are their normalization factors. Thus, using
appropriate k,-, the design variables can be force to
vary approximately between -1 to +1. The

derivatives of a objective function J(z) with respect

to normalized variables b,' are given as
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4. Parameter estimation and results

In order to access the capability of smooth cap
model in predicting response behavior of a real
material, model parameters needed to be estimated
from laboratory experimental data. In this section
parameter estimation procedure for one dimensional
confined compression test and with Ottawa sand is
presented, followed by the numerical simulation
result. Satisfactory agreements are achieved between
experimental data and numerical model responses.

4.1. One dimensional compression test

For the wuniaxial strain test conducted in the
laboratory, the dry sand sample was loaded axially
under stress controlled mode. The
diagram for the test is shown in Figure 2.

schematic
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Fig. 2. Diagram of experimental 1-D compression test

A general procedure for the estimation of material
parameters used by the constitutive model follows;
1) initial normalized design variables bi are assumed

within physically reasonable bounds; 2) the design
variables were unscaled (x; =4k, + b;,) to calculate

the response from the constitutive model; 3) the
objective function and the gradient were computed.
The estimation algorithm is shown in Figure 3. A
comparison between experimental and predicted
curve is shown in Figure 4. The values of the
material parameters obtained in the
process and the boundary
summarized in Table 1.

estimation

values used are

Optimization program

read initial scaled variables b

i=i+1
I

unscale the variables
z=k*b

l
compute J(z)and dJ(.’D)/db

check optimum criteria

bi+1 - bt+ Abl(dx]/db)

Fig. 3. Optimization algorithm for 1-D compression test
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Fig. 4 Simulation result
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Table 1 Optimal value of parameters

Material Parameter Uniaxial strain test
(Upper and lower bound) (Optimal value)
0 <\ < 10°(kN/m?) 2.3719 x 107
0 < p < 10° (kN/m?) 1.1101 x 107
0 < a < 10°(N/m?) 2.9717 x 102
0<8<405 0.2727
0< W<0.1 0.0157
0 <D< 1073 (kN/m?)™! 2.994 x 1074

—10° < k < 0(N/m?) —100
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5. Conclusion

The parameter estimation procedures for the soil
model have been presented to identify the eight
parameters of the smooth cap model using Ottawa
sand. An experimental data is first obtained from
uniaxial strain test which is considered to be
representative of material response. Then, the
numerical simulations with initially guessed values
are performed until the model responses are matched
with the experimental test results.
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