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A Study on Monitoring System using Neural Networks for
Welding Gap Detection
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1. Introduction

Welding is essential for the manufacture of a range of engineering components
which may vary from very large structures such as ships, bridges and heavy
construction machinery to very complex structures such as aircraft engines, cars or
miniature components for microelectronic applications.

In welding process. If the final weld qualities after welding using the sensor are
not desirable, additional work is necessary to acquire the desired weld quality.
Therefore the most important thing in implementation of welding automation is the
weld quality.

The analyses of physical phenomena arising from the welding process in
horizontal fillet welding are helpful to predict the weld quality according to certain
welding conditions such as welding current, arc voltage, welding speed. Therefore,
it is important to know how weld defect formations are affected welding conditions.

Among the various welding conditions, welding gap can be induced due to cutting
process which makes workpiece to be not flat. Because welding gap is changed in
process, the poor bead shape is created, which weld quality is lowered. Though
welding gap is a serious factor of a falling-off weld quality in various kind of
weld defect, it is difficult to detect welding gap by sensor due to welding
environment.

Therefore, in this study, neural networks based on a back-propagation algorithm
and the optimum design based on the feasible direction method were implemented
to estimate welding gap precisely.

As mentioned, the phenomena which occur during the welding process are very
complex and have highly non-linear characteristics. Therefore, it is difficult to
select welding conditions, that the weld bead shape is affect by. To achieve a
satisfactory weld bead shape without weld defects, it is necessary to study the
effects of welding conditions on the weld bead shape.

Accordingly, neural networks, can model non-linear function, are used monitoring
of weld bead shape to overcome complex and non-linear characteristics in welding

process. Neural networks learn non-linear phenomena in welding process when the
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vartious welding conditions are selected. Learning capability of neural networks can

be estimated the weld bead shapes in real -time.

2. Neural Networks

Artificial - neural  networks(ANN)  have gained  prominence  recently among
rescarchers of non lincar svstems. As the name implies, these networks  are
computer models of the process and mechanisms that constitute biological nerve

svstems, to the extent that they are understood by researchers.

2.1 Multilayer Neural Networks

Multilaver  neural networks . was used  as basic  srtucture  for the applications
discussed here. Fig 1 shows mullilaver neural networks,

The back  propagation training algorithm  allows experiential — acquisition of
mput-output  mapping knowledge  within multilaver  neural networks,  Fig, 2
llustrates the flowchart of the error back propagation training algorithm for a4 hasic

two laver network as in Fig. L.

Input Hidden Qutput
layer iayer layer

Fig. 1 Multilayer neural networks
Given are P training pairs. {xl.‘dl,xﬁy,dg,--~,x‘,,dp}. where  x;is (i -1), d, is
(K- 1D, and i=1,2, ~-, PoThe operator  I'is a nonlinear diagonal operator with
chagonal clements being identical activation functions. The learning begins with the
feedforward recall phasctstep 2). After a single pattern vector X 1s submitted at the
mput. the lavers” responses v oand o are computed in this phase. Then, the error

signal computation phasetstep - follows. Note that the error signal vector must he
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Step 1 | Initialize weights V,W l

Begin of a new training cycle '*Begin of a new training step

Submit pattern x and
compute layer’s response
y=T'[Vx]
o=TI"[Wy]

]

Step 3 Compute cycle error
E«E+1/2|jd-ol?

1

Calculate errors 5,3,
Step 4 8,=1/2[(dy-0)(1-0,M)]
8, =w;' 8 !

£1=172[1-y;2)

[0 ] 1

N Step5 Adjust weights of output layer
Step 8 W «W+n 8,y
—Yﬁm I

Adjust weights of hidden layer
( stop )

Step 2

Step 6

V «V+n 3 x!

Step 7
More patterns in
the training set

Fig. 2 Error back propagation training
algorithm

determined in the output layer first, and then it is propagated toward the network
input nodes. The weights are subsequently adjusted within the matrix W,V in step
5, 6. Note that the cumulative cycle error of input to output mapping is computed
in step 3 as a sum over all continuous output errors in the entire training set. The
final error value for the entire training cycle is calculated after each completed pass
through the training set {x;,X», --+,x,}. The learning procedure stops when the

final error value below the upper bound, E nay 18 obtained as shown in step 8.

2 2 Functional Link Networks

functional link networks are single-layer network. Generally, the hidden layer of
neurons provides an appropriate pattem to image transformation, and the output
layer yields th final mapping in multi-layer networks. Instead of carrying out a
two-stage transformation, input/output mapping can also be achieved through an
artificially augmented single-layer network. The separating hyperplanes generated
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by such a network are defined in the extended input space.

The kev idea of the method is to find a suitably enhanced representation of the
input data. Additional input data that are used in the scheme incorporate higher
order effects and artificially increase the dimension of the input space. Fig. 3 shows

the structure of functional link networks.
Original X, SN

pal(ernﬁ -
-~ :

Higher order 2
input terms

o M

Fig. 3 Functional Link Network

3. Welding Theory

GMAW(Gas Metal Arc Welding) process are non-lincar and very complex to
analyze because of physical phenomena. Physical phenomena of welding process is
described by various welding parameters such as welding current, arc voltage,
welding speed and so on. Among the various welding parameters, welding gap is a
important fact of a falling-off weld quality in various kind of weld defect. Fig4
shows and defines Welding gap of horizontal fillet welding. But it is difficult to

detect welding gap by arc sensor in welding process. Droplet rate is related to

i ;

|

i ! :

i :

| Q ; ‘/Q
‘/ > Contact “« (.

— area = — e

{a) In case of No gap (b) In case of existing gap
Fig. 4 The contact area between arc and
workpiece



446 BEEBERBR KBk WXE 218

L1, L2 : Leg length 1,2
: Penetration
x : Throat

A
B
Thickness
L1 \ 4 DJ'— C : Reinforcement
T | \/ J Height
< ~ D : Welding Gap
]
L2 A B c

Fig. 5 Profile of weld bead shape in Horizontal Fillet Welding

welding gap other than various welding parameters measured by arc sensor.

When filler metal is deposited from the electrode to the workpiece, generally
droplet rate is the number of the transferred droplet per second.

As mentioned, droplet rate is a important fact in various welding parameters that
estimate welding gap. The more expanded welding gap is, the more decreased
average of droplet rate is.

The reason by which phenomena between welding gap and droplet rate are
occurred is as follows; In case that welding gap exist on workpiece such as Fig. 5,
The contact area between arc and workpiece is decreased by welding gap, and then
droplet rate is decreased by increased resistance.

<

(a) In casc of no gap (b) In case of existing gap

Fig. 6 The hight of bead

Also, Fig. 6 shows the other reason that droplet rate is decreased as welding gap
exist. In contrast to no gap workpiece, the height of bead in Fig.6-(b) becomes
lower, because of welding gap.

As mentioned, because of the melting and metal transfer phenomena, GMAW
process are non-linear and complex to analyze. And it is important to know how
weld defect formations are affected by the weld bead shape and welding
parameters. Welding parameters such as welding current, arc voltage, welding
speed, gas flow rate are highly coupled, and thus it is essentially difficult to derive
a mathematical relationship between them. Thus there are many drawbacks to
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estimate weld bead shape for monitoring system.
Generally, parameters that represent bead shape is shown Fig. 4 such as vertical

and horizontal leg length(L1, L2), penetration. throat thickness, reinforcement height.

4. Simulation results and discussion

In automation of welding processes, many  attempts  were implemented  to
mmprove weld quality @ weld joint test. estimate of optimal welding condition, proper
welding process, sclection of welding materials, examination of welding defect and
trouble and so on. - Among these many attempts, welding gap is a important factor
of a falling off weld quality. Also we can appreciate: weld quality by means of
analvzing weld head shape.

However. it s difficult to detect welding gap. to estimate weld bead shape
real time using current welding processes equipment. Therefore, in this chapter, it
15 suggested that welding gap detecting svstem and monitoring  svstem  using

neural networks,

4.1 Modeling of Welding Gap Detecting System

There are many Welding parameters which influence welding gap such as the
welding  current, arc voltage. droplet rate and so on. Generally, many  welding

parameters are coupled with each other but not directly conneeted with welding gap

Welding ——— »§&

current(ly
Original Arc ey
Pattern voltage(V)

Welding

droplet Gap
rate(tD R}
v
Higher
order DR >
input
terms

I"V'D R
Fig. 7 Multilayer neural networks used for welding
gap detecting system
individuallv.
Neural networks are used in welding gap detecting to overcome non lincarity of

welding process. Welding gap detecting system using neural networks is shown
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Fig 7. Welding parameters such as welding current, arc current, droplet-rate is
used in input parameters of neural networks and output parameters is welding gap.
A good performance could not be obtained using general multi layer neural
networks due to highly non-linear characteristic in welding process. Therefore, to
solve these problems, The proposed neural networks as shown Fig. 7 has higher
order input terms that used functional link networks. Although no new information
is explicitly inserted into the process, Additional input data that are used in higher
order input terms artificially increase the dimension of the input space. Thus the
proposed neural networks can represent the non-linear relationship between the

input and output parameters by means of the extended input space.

2.7
2.4
2.1
1.8
1.5
1.2
0.9
0.6
0.3

Estimatced welding gap using neural netw

o 0.3 06 0.9 1.2 1.5 1.8 2.1 24 27 3
Measured gap[mm]

Fig. 8 Comparison between measured and estimated welding gap for
training data

The training data used learning was selected 174 patterns, and the test data was
used in 145 patterns. The train and test data was derived by experiment which get
droplet rate, when welding gap was artificially created in workpiece. The test
results from this algorithm are shown Fig. 8, Fig. 9. Each of artificially created gap
was estimated by the proposed welding gap detecting system.

According to these results, the proposed welding gap detecting system was
demonstrated to be adaptive in other welding parameters except for the training
data used learning.
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Fig. 9 Comparison between measured and estimated welding gap for
optional data

4.2 Modeling of Monitoring System

Weld bead shape is helpful to predict the weld quality according (o certain
welding parameters such as welding current, arc voltage, welding speed, welding
gap and so on. In order to estimate weld bead shape, it is necessary to derive a
mathematical relationship between weld bead shape and welding parameters. but the
approach to the mathematical modeling is to deepen the understanding of the basic
phenomena involved in the process. Therefore, weld bead shape be monitored using
neural networks which can leam a mathematical relationship between weld bead
shape and welding parameters.

Training input parameters used learning of neural networks arc welding current,
arc voltage, welding speed. welding gap. Output parameters is selected by fifteen
points that represent geometry of weld bead shape, including vertical and horizontal
leg lengths, penetration, throat thickness, reinforcement height. Fig. 10 shows fifteen

points that represent geometry selected output parameters.
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L1,L2 :Leg Length 1,2

A : Penetration

B : Throat
Thickness

(o3 : Reinforcement

Hight

L1

Fig. 10 Fifteen points by selected output parameters

Welding
Current(l)
Arc
Original Voltage(V)
Patten Welding
Speed(W.S.)
Welding
Gap

14 15

Fig. 11 Multilayer neural networks used for monitoring system

As shown Fig 10, the manual welder easily understands welding process in terms
of visual effects and weld defect is detected in real time due to the proposed
monitoring system.

Structure of neural networks used the proposed monitoring system is shown Fig
11.

The proposed neural networks has higher order input terms like welding gap
detecting system. The number of the training data used neural networks is 198.

The simulation result was shown Fig. 12. The actual surveyed weld bead shape
was monitored as shown Fig. 12-(a),(c),(e) and the estimated weld bead shape was
monitored as shown Fig. 12-(b)(d)(e). As compared with measured weld bead
shape, the test results using the optional input parameters could be acquired the
satisfied and adaptive output due to generalization capability of neural networks.
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Fig. 12 Comparison between actual and estimated monitoring

Fig. 13 shows cach of weld bead shapes when welding gap is changed. In

analysis of Fig. 13, we were able to analogy effect of welding gap. Thercfore. the
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proposed monitoring system could predict weld quality precisely, and the cause of

various defect could be induced in welding process.
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Fig. 13 The change of weld bead shape by means of welding gap
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5. Conclusion

In this paper, welding gap detecting and monitoring  svstem were itroduced to
estimate weld defect in real time using neural networks.

The poor bead shape which evaluate weld quality must be excessively caused bv
welding  wap in various  factors. The  above results - showed that the proposed
welding gap detecting svstem was demonstrated to be adaptive in the optional
weldmg parameters except for the traning data used learning. Accordingly, welding
gap was satisfactorilv estimated by proposed  svstem,  that  overcame non linear
charactertstics and

complexities of welding process.

Also. the proposed monitoring svstem could predict weld quality preciselv, and the
cause of various defect could be induced in welding process. Suppose that vision
sensor s used, inorder to measure weld bead shape. we must be faced with 2
number of problems: complexity of Image processing by camera. much time and
cost, improper environment and <o on. But the proposed monitoring  system, using
neural networks, could overcome  these problem; and weld bead shape can be
precisely: monitored in all welding conditions.

Namely, compared with  other techniques,  svstem was  stable and  robust in
disturbance, convenient 1o solve problem, and benefited in economical points.
Therefore, we expect that the above proposed  system can effectivelv improve
welding  quality, and reduce  time consuming work in welding process due to
decrease weld defect.

Finally, to improve welding automation technique, the proposed system is expected
to control  welding process by means  of connection  of other  Al(Artificial

Intelligence) techniques.
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