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Abstract

To analyze the ocean wave more efficiently, more fine grids are used with relatively

less computer memory. Each element of free surface is discretized into more fine grids
because the ocean waves are much influenced by the mesh used in the finite difference
scheme. According to the flow analysis, remarkable improvements could be seen in the
free surface generation. The multi grid is applied to confirm the validity of scheme. The
Baldwin Lomax turbulence model is used for the analysis of S103 Inuid ship. Finally
some discussion on experiments was made for the physical phenomena of the viscous

flows around ship.

1. Introduction

The finite difference method has a serious
problem because it requires very long CPU time
and a huge memory storage for accurate
simulation. Recently, the improvement of the
efficiency has been strongly demanded. The
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method of implicit scheme is one of the examples
for more efficient computations. Some comparative
calculations by that method has been carried out.
It seems that IAF(1) is quite promising to speed
up the calculation but its formulation is a little
complicated. For the numerical truncation error
to be small enough to have little effect on the
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physical performance, the mesh size should be
strictly considered. The mesh size must be
extremely small for high Reynolds-number flows
to meet this demand. However, such fine meshes
are not always necessary for all the equations
and terms. For example, the truncation errors of
the Poisson equation for the pressure of the
non-convective terms in Navier-Stokes equation
do not have much influence on the results as the
convection terms do. The hybrid type of the
mesh may make the computations more efficient.
One possibility is to employ different mesh
systems depending on the characteristics of the
equations or the terms. We call such a method
“double mesh method(2)” or “triple mesh
method(3)”, written in short as DMM or TMM
hereafter. It was first proposed for numerical
simulations of 3-D nonlinear free-surface flow
problems by boundary element method(4). In
order to reduce the numerical viscosity as much
as possible, a very fine mesh system which
contains about 60 grids(5) in one wave length is
used in the finite difference calculation concerned
with the free-surface equations, while the
governing Laplace equation is solved on a
relatively coarse mesh system which contains
about 10 grids in one wave length by the
boundary element method.

The computed results by DMM or TMM were
of enough accuracy and both the computing time
and the size of the memory storage were
remarkably reduced. In the present paper, a
multi-grid on the free-surface is introduced in
the finite difference solver of the Navier-Stokes
equation to improve the calculation efficiency. As
mentioned, the demands to the mesh size are not
the same for all the equations and the terms in
the finite difference method. So it is expected
that some improvement, similar to that achieved
in the simulation of free-surface problem by
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DMM or TMM, may be made by introducing
more fine meshes in the conventional finite

difference scheme.

2. Numerical Strategy

2.1 Basic Equation

The grid size for the calculation of the
free-surface elevation must be determined by a
different scale, the minimum wave length. A
single grid system(6) is usually used in the
whole computation whose minimum size is
determined for the numerical diffusion to be less
than that by viscosity. In the simulation, two or
three mesh systems are usually used whose
sizes are different each other depending on the
characteristic of equations. The first is for the
convective terms in the Navier-Stokes equation,
the second is for the Poisson equation, and the
third is for the free-surface equation. The third
grid system requires the finest mesh. In the
present calculation, the third one is numerically
confirmed ; more fine grids are used to improve
the accuracy of free-surface calculation with
relatively less computer storage. One element of
the free-surface is discretized into (4xii,4xjj),
(8xii,4xjj), (12xii4xjj) fine grids because the
free-surface waves are much affected by the grid
size in the finite-difference scheme. Fig. 1 shows
the shape of (4xii,4xjj) discretization.
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Fig. 1 Discretization of grid on free-surface
(4xii,4xjj case)
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The positions, or Lagrangian coordinates, of each
particle (x",y'p,zp) are obtained by
integration from some initial position (xX%,y%z%) at
time t=0;

numerical

X =%+ [lup-dt

o = Y%+ [ 8 g e dt e, 1)
2+ [t wprdt

where up,Vvp,W, are the velocities in the Eulerian
mesh at the time dependent location of the particle.
In the present MAC-based codes, the particle
velocities are evaluated by two-variable linear
interpolation. Consistently with the forward time
integration of MAC method, (1) is evaluated
sequentially as (2).

A

xi™! = xi" + ui" - At
Pi™ = YT 4 VT ¢ AL e 2
Zi™! =z + wit - At

(2) is the Lagrangian expression of the kinematic
condition on the free-surface. The condition can
also be expressed in the Euler form as follows;

/ot = —u - 3/dX — V + /Y + W e 3)

where { and t are the free-surface elevation and
the time respectively. Numerically (2) is
equivalent to (3) if the 1st order upstream
difference scheme is used in (3).

The shape of the free-surface is not known a
priori; it is defined by the position of the marker
particles. We note here that the boundary conditions
at the free-surface require zero tangential stress and
a normmal stress which balances any externally
applied normal stress. The application of these
conditions requires a knowledge of not only the
location of the free-surface at each grid but also its
slope and curvature. In our calculation, the
z-coordinate of the free surface is re-arranged by
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the bivariate linear interpolation in proportion to the
newly calculated projected area at each time-step.

2.2. Lagrangian Expression of Kinematic Free
- Surface Condition

Suppose Pi1(Xi1,Z%1) and P(X,Z%) are two
grids on the free surface at t=n as shown in Fig.
2. At the next time step t=n+l, these mark points
move to P’i-1(X'i-1,Z'i-1) and P'i(X'i,Z'i) respectively.

Pi

Fig. 2 Free surface movement

In the present research, the x,y coordinates of the
grids on the free surface are fixed and z coordinate
moves freely. The elevation of the new free
surface grid Qi can be determined by P’i-1 and
P’; as follows;

™=z 4 K (XimXi ) covererreerrrenseneaeesencnns (4)
where
K = (Zi" ~Zic1 " V(X" =Xic1 ") ererrererereeeenresennees 5)

= (Z"-Z "+ (wi"-wi") - 4t}
/ Axixia+(u"-uia”) - 4t}

&' can be further expressed as
™2 6™+ WP At s 6)

- (ui"4t) - (&= &/ (ximxi-1)
(1+(4w/4x) 4t} / {1+(4u/ dx) 4t}
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or

(& ™- ¢ "4t
=wi" - w " (86" dx
{(1+(4aw/4x) 4t} / {1+(4u/4x) 4t} - (T)

where

AW/ AX = (W= Wi-1")/(Xi=Xio1) woeeeverrrerresmereerennane (8)
Auw/dx = @"-uia")/(xi-xi1)

2.3 Turbulence Model

The turbulence model is Baldwin- Lomax [9]
zero equation model, whose original form is from
Cebeci-Smith[10].

It is widely used in the aerodynamic
computational and also in the incompre-ssible
flow computation around ship. In the present
study, flow is enforced to be turbulent from the
fore of a ship. The free-surface effect on
turbulence is not included in the model. There
has not been any turbulence model that can be
applied to the boundary layer and wake of a
surface piercing body like a ship. Therefore in
the present calculation, the simple zero equation
model is used. The kinematic eddy viscosity is
evaluated in the inner and outer layers separately.

3. Computation and Discussion

To confirm the numerical efficiency of the multi
grid, the high Reynolds-number free surface wave
of S-103 is studied. S-103 is an Inuid model with
the beam/length ratio of 0.09. In the present
case, calculations are made at Rn=10° and
Fn=0.28 with Baldwin-Lomax turbulence
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model. The result is that at the time T=3.0,
when the convergence is well assured. The grid
size of regular type is 74x29x30 and the
multi-grid on the free-surface is numerically
tried. Fig.3 shows the wave patterns obtained
by the regular grid. Fig4 uses the grid of
(4xii4xjj) on free surface and gives us about 7%
improvement in the free surface development,
compared with that by regular grid. It means that
the size of grid is very important in moving the
marker particles on free surface. Fig.5 uses that
of (8xii,4xjj) on free surface. It shows the
improvement of about 19% at T=3.0. Fig.6 uses
that of (12xii,4xjj) on free surface. Some more
improvement is obtained;, 29% compared with
that of regular grid at T=3.0.

Fig. 7 shows a significant wave pattemns although
the Froude number changes
modestly from 0.26 to 0.30; at Fn=0.27 no
significant stern wave is observed compared with
those at Fn=0.26 or 0.28. On the other hand, a
wide “wake” zone in Fig.8 is observed behind
the hull at Fn=3.0. A careful observation of the
"wake” tells us that the free surface
wave fluctuates intensively there. The free
surface at Fn=0.27 is completely different where
such free surface fluctuation is not observed.
The separation of Fn=0.27 takes place at more
upstream position than that of Fn=0.30. This
situation can be seen more clearly in the limiting
streamlines in Fig. 9. The separated region of
Fn=0.27 is significantly wider than that of 0.30.
The experiments by twin tufts show similar
tendency; the separated region of Fn=0.30 close to
the free surface is due to the free surface
sub-breaking.
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Fig. 3 Free surface contour by regular grid Fig. 4 Free surface contour by
(ii,jj) for S-103 case multigrid (4xii,4xjj) for S-103 case
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Fig. 6 Free surface contour by
multi grid (12xii,4xjj) for S-103 case

Fig. 5 Free surface contour by
multi grid (8xii,4xjj) for S-103 case
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Fig. 8 Stern wave pictures of S-103

Fig. 7 Wave patterns of S-103 at four
at Fn=0.27 and 0.30

different Froude numbers
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Fig. 9 Calculated (above) and observed(below) limiting streamlines at Fn=0.27 and Fn=0.30
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4. Conclusion

To simulate the free surface wave more
efficiently, the multi-grid method is applied to
the finite difference solution of Navier-Stokes
equation. The method is to use the multi grid
system on the free surface. Through several
comparative computations, we found that the
method is significantly effective for the free
surface simulation of the viscous flows. Finally
some discussions on experiments are made for the
physical phenomena of the viscous flows around
ship.
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