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Theoretical Analysis of the Coupled Torsional-axial
Undamped Vibration of the Marine Diesel Engine Shafting
By

Hiojung Jeon

Abstract

Ever growing engine size and power have renewed such crankshaft trouble as axial or coupled torsio-
nal-axial vibration. For the former mode some empirical methods have been proposed to calculate its
natural frequencies, but are not so reliable as ones for torsional vibration. For the latter it seems to
have been dealt with nothing but an experimental, scale-model method.

In this paper, (1) a new equivalent system of crankshaft is supposed so as to tolerate 4 degrees of

This work was performed under the guidance of Pro. Dr. K. Tsuda at University of Tokyo.
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freedom : axial, torsional and two kinds of lateral vibration. (2) Theoretical, not empirical equations
for calculating stiffness values of the shafting are derived, so that a design-stage forcast of the modes
of shaft vibration is possible. (3) Equations of motion:.are written in fnatrices, transformed into eigen-
value problems and solved with the Jacobi-rotation method op a. digital computer, not iteratively but
directly. (4) The solution gives every mode and frequency on one chart, including coupled torsional axial
modes which have never been correctly explained before.

Three kinds of shafting were investigated, and their solutions showed fairly good agreements with the
measured data on board, The author recommends to apply this new matrix method not only to coupled
system as above, but also to simple system .without coupling—pure torsional or pure axial—in place of
Holzer method for convenience in digital computation.

1. Introduction

In recent years, the development of the
marine Diesel engine toward more and more
powerful and also increasingly larger units
has brought about shaft troubles due to axial
or coupled torsional-axial vibration. 9 For
the former some empirical methods to calcu-
late natural frequencies and modes have been
proposed, but they are not so reliable as ones
for the torsional vibration. For the latter it
seems to have been dealt with nothing but an
experimental, scale-model method. '

This paper presents a theoretical method
to solve crankshaft vibratien problem without
isolation of four modes from one another:
torsional vibration, axial vibration and two
kinds of lateral vibration, introducing an ori-
ginal equivalent system with many degrees of
freedom and applying a matrix technique com-
bined with digital computation.

Further, the author’s method more conve-
miently applies to isolated torsional vibration
problems than the old iterative method, which
is yet popular even at digital computation in
spite of the recent remarkable progress of
computing techniques and equipments.

" both sides of the journal,

2. Method of analysis

2.1 Equation of motion"
Fig. 1 shows the original reduction
eight cylinder crank shafting. The center
line of the shaft from fore-end to rear is

of an

defined to be x axis, with its origin at the
middle point of the fore-end journal bearing.
Axes y and z rotate around X with the mean
speed of the shaft, where y-axis is put para-
llel to the mean figure of the fore-end cr-
ank arm center line. The positive directions
of forces and moments correspond to that of
co-ordinate axes. The equivalent system has
for every crank journal one inertia body with
four degrees of freedom: x-motion, #-motion
around x, ¢ around y, and ¢ around z, cor-
lateral and
The

mass moment of inertia of the i** body, I,

responding to axial, torsional,

another lateral vibration respectively.

amounts to the sum of inertia moments on
including recipro-
cating masses, i. e. the sum of the halves
of the inertia moments derived at convention-
al torsional vibration analysis. The mass
of the i* body, M:, however, excludes reci-
procating masses. Finally, moments of iner-

tia around the other axes are defined as
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Fig.1 The equivalent model of an 8-cylinder
crank shafting
m=n=%m

The definition of shaft stiffness between
inertia bodies is as follows, although its theo-
retical derivation will be described in Section
3. Consider two bodies adjacent each other,
the i-1** and the i** body, and name their
centers of gravity Point i-1 and Pt. i respe-
ctively. Fix Pt. i and give Pt. i-l a unit
displacement in x-direction. Then the indu-
ced force at Pt. i should be equal to Asisi-,
multiplied by a unit length, i.e. & represents
stiffness. For another example, fix Pt.i and
give Pt. i-1 a unit ¢-displacement. Then, the
induced moment in @-direction at Pt. i-l is
koi- pi-y. The followings define the abbrevi-
ation of those suffix expressions, in case of

Pt. i fixed and Pt. i-1 given a unit displace-
ment in x-, -, ¢-, ¢-direction.
/2;;;_1:;-1 =k“, kﬂi_lxr—, =k21, """" k\bi—lxi-l =‘k“,
Foxizicy =Ry, oo , Reizi-i=ky,

krio0i-1=Fkyy, Roioypioy = Rygy - Ryi-10i-) =Ry,
Reivioy =Ry, »++, Ryisic Ry,

Rxi-yoi-1 =Ry, Roiepi-y =Ry, eRgioipi-1 =Ry,
Ruigi-y = kgy, -
Brioypioy = Ryyy Roicygioy=Ryg, - Rpic1gi-y =Ry,

*y k¢f¢i—1 =ky,

kzisbf—l:ksn ) k¢i¢i-1=kn4

Now, fix Pt. .i-1 and give Pt. i a unit dis-
placement. In this case, the abbreviation of
k-expressions .is defined as

kriojxi=Fkys, Roio i =Ry5, -+ Rxizi = By, Roixi = By,

o Ryizi = Rys

Eﬂ ﬂt&{}ﬁ{wﬁﬂﬁﬂ;&ﬂ [ r—— %

5

Bsicroi = kg, Roi-10i =Fag, <+ Raioi =Ry,

koigi =Ry, -+ Rypioi = Ry;

Rxicipi =17, Roicjoi =47, -+Raioi = ky1,

kﬂiw’ =kc7; "'kfﬁisﬂi:ku

Raicpi =Rygy Roio19i = g5, <+ Raigi = Ry,

km,; :kesy "'kdl"cﬁi =kaa

The same idea applies to the

combination of the i* and the i+1 body:
krivi=Fyy, Boiri=Ryy, o Raiv i =By,

Roivyxi=FEgy, - Rpivixi= Ry,

keioi=Fyy, Roisi=Fyy, -+-Bxiv0i= Ryy, Roivi0i =k,

"'k¢i+10i=Eag

FRxipi =£13, kaioi =E23, o Raivpi = Ry, koivipi= EM,

"’k¢i+1¢i=533

k:n]:i:EH, kai¢;=l§“, “'kzi+14u'=k-54, kﬂi+“’)i =Es4,

ki =ky,

xixie) = Bisy Roixiey = Ryg, o Baig yxivy = K,

Roisixivy = ks, - Boivisie, = By

keiviey =FE g, Roiviey = Rog, B i0:0, = Bsg,

Roivi0iey =y, Boiri0ie; =4

kz-‘go:‘+1 =k-”, kli¢i+1 :E”, "'kxi+1goi+1 =57

kﬂ-‘+w-’+1 =ES'I’ "'k¢5+1¢i+1 =’;a7

krivivy =Ky, Roigiv) =FEapy v Rxivipiv By,

koivipivy =Ry, --Rpivipie, = By,

Among those shown above, expressions &,
k!Zr ".kl5) A klﬂ! Ell) El‘l! o Elﬁl te EIB’
used common without any regard to body
number for the sake of simplicity,

are

in spite
of any possible confusion. Using the k-expre-
ssions except those which are definitely zero
equations of undamped motion of an n-cylin-
der engine shafting are written as follows.
In the first equation of the n--2* body; ko
represents the thrust block stiffness, alth-
ough the thrust block should be numbered n-+3
in case it is at a distance from the rear-end
throw. .

Mz kxRt Risxa 4 Ry, =0,

Ix191+k2201+k23¢1+k2502+k21‘ﬁ2=0 ]
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i
I @1+ Rsy014-Rysp - ey 4 oy = 0 J
L4y 4y ko + kg, =0
..................... the 1% inertia body
Moy t-ks 2+ ks 4 (Bss+ k1) 204+ E s,
+ (Rsyt ki) ot Rysxs - kps+Euds =0
Loy 4y + kops -+ (Rog+ 1) 0+ (g,
F ko) ot kot Ry b kgt ko =0
Lo@y ks by -+ By, (ks £10) 6,
+ kot k) @t By ot Boss B
kst kst R =0

L@t kot HRo 4+ (Rys k) 20+ B 00,
+E43$02+(ksa+E44)¢z+E45x3+Ewax

+ kot kg =0

the 2" inertia body

Mgtk xio 4 Rsypioy ks fior = (Rss
+En)x-’+(k57+};13)50i+(k55+14>¢-'
- Eisxiv B piv - Rigisg =0
Liffit-kobic - Rospi- 1Ry iy 4 (ks
+E22)0i+(k67+k_23)§0"+(k63+524)¢"'
+kolisiFkypiny HRodis =0
Li$it-kyxio\+kaglicy - kospi- ki
A (ks ko) xik (Ryot-an ) 0i4- (oo
: By it (Bt B )it Bosxin  +Eaibiny
+Eav‘/’i+1+Eu¢i+1=0
Liditky%i- -+ kyie 1 kysi- 1+ Ryui-y
A Ckys 4y xit (RygHRao) it (kg Ry )i
d(kgytE )it Eosxiv FRiliviF R apiv
+kPin=0

Mos5inar - Rs 2Xn - Rospntg i at (fss |
+En)xn+1+k57¢n+1+k5a‘/’n+1+ﬁxsxn+z =0
Lont1Gne 1+ RosOnt-Rosont-Ro Pt (Rig
dFyy)0nt 1 Rgrns + Rggne By =0

Iyn+1¢n+1+k71an'k720~+k73¢n+ku¢n
FkqsXne - Ryobney+ (ko tEys)pne,
+ kP =0

6

X

FFgsxns 1 RyoOner + Ryrne 1 4 (Rgs
+£44)‘//n+1=0

..................... the n--1 inertia body
MosgiinesBsiXns ;4 (Rys 1y Ro) Xni
dkysxnry =0
Ixﬂ+29'n+2+kc20n+x+(ksﬁ‘l‘Ezz)ﬁﬂH
FRyifnrs=0

---the n+2% inertia body—thrust bearing

Lins $nty g Xnt- Ry sOn - Ryspat- Ry J

.........................................................

Mﬁ550+Eslxp~1+Essxﬁ=0 }
pryp‘l";ez&o—l"‘gesap'—‘o
...the rear-end inertia body—propeller

.......................................... 1)
2.2 Method of solution.

The complicated appearance of Egs. (1)
vanishes by introducing matrix expression
as

[M]{E}+[K]{x}=0 ........................... (2)

where [M1, [K] denote inertia moment ma-
trix abbreviated as mass matrix and stiffness
matrix respectively, and {x} is coloumn ve-
ctor or coloumn matrix of co-ordinates and
{#)} represents the onc of the second deriva-

tives of x.
Let [K]-'=[F], then
[F][M]{x}+{x}=0 ........................... (3)

where [F] is flexibility matrix, which con-
sists of influence numbers. Assume the sol-
ution of Eq. (2) to be

{x} = {a}e™
where {a} is amplitude matrix.

From Eq. (2) and (4)

(—wz[M]—l—[K]) {a}sm0erceerenneennemennienen (5)
The standard deduction process (see references
17,18 or 20 for details) changes Eq. (5) into
the following determinant:

ITK]—=[M7]] =0eereveeneees e e rinrraeans 6)
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which leads to characteristic equation of ei-
genvalues, o’

For the solution of eigenvalue problems
The first method

expands Eq. (6) with respect to @ into a

there are two methods.

polynomial, then solves it. However, this
method is practically impossible even by digi-
tal computation, because of as many degrees

of freedom as 50.

The Second method (16) (17) (18) (19) (20) may be
subdivided into several, two of which will be
described. Transform Eq. (5) into.

(M]-'[K] {a} =w'{a}
Solve this equation digitally, computing for w?
and {a} by matrix iteration process, which
is much more economical than salving an
Although this method
has been sometimes manually applied to ob-
tain a few largest eigenvalues and correspo-

n** order polynomial.

nding eigenvectors, in this case smallest
cigenvalues are required, so that Eq. (7) is

rewritten as

(K17 [M1{a) = 1 (a)

But, this expression necessitates derivation
of flexibility matrix [F]=[K]-!, besides
accuracy of‘ higher order solutions is not su-
fficient. Furthermore,’ if determinant [K| or
IM| is singular, its null elements should be
taken away, making a reduction of matrix
order by the degree 6f singularity. Unfortun-
ately, crankshaft has a singularity at w=0
where |K| =0, since it allows movement as
a rigid body. In addition, eigenvalues equal
or nearly equal to each other or one another
also make trouble.

The second subdivision named Jacobi rot-
ation method yields @ and {a} -without sacri-
ficing accuracy and time. * Transform Eq.

7

MR HHBiRES WA AT 5
(5) into
Limitay =itk ItM )

........................ -(9)
Once more, transform Eq. (9) into a simpler
form as
@B =[B]{B) vveererevrremmniniiniienen (10)
where

16y =M {a)

[B1=[M]1 k1M
Application of Jacobi rotation to Eq. (10)
gives @’ and {f}, then from them @ and {a}.
This method is a diagonalization process,
which means transformation of determinant
without any change of eigenvalues into such
determinant that all the elements other than
those on the principal diagonal are zero, so
as to easily obtain eigenvalues. However,
only a real symmetric matrix applies to this
method and fortunately the equivalent system
shown in Fig. 1 gives such a matrix. In add-
ition, this process has no trouble, even in
case of equal eigenvalues or at singular poi-
nts. __ o

In conclusion, -tﬁe author chooses the Jac-

obi rotation method.
3. Stiffness expressions
3.1 Thrust block stiffness

Since theoretical estimation of the thrust bl-
it ‘must be

When the
thrust block is apart from the engine, direct

ock stiffness is yet impossible,
measured directly or indirectly.

measurement is possible. If it is built in the
engine, or its housing is bolted to the engine
block, its stiffness is possibly deduced from
the running test results. The author presents
a method of deduction as follows.

In case of nodeless (1st mode) axial vibr-
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ation, the resultant inertia force of shafting
loads the thrust block as

4
iZ'_lmu'c'x+kox,.+2=0 .............................. (11)

Let xi=ZXisinw¢ and w,'=2, Then

?

;2.:—. MK iRy = KnpgRy vonvrvenmerrrosnmenennssnienne (11)
A Z Ny i (EY 2 e :

and k, (7“2 3 m (E—I) 2 (12)

where 1, is obtained at the running test, and
(%:/%,) values are obtainable. by application
of Holzer method to the shafting. Practically
however, this:application should be done in
three processes: the first.deals with ¥;/%, from
fore-end ipertia. upto thrust block, and the
second %:/%» from propeller- upta thrust blogk,
and the. final puts the fore side calculation
of xes+; equal to the rear-calculated Xa+..

Or, if the abaye pracess appears complicat-
ed;, one may get a rough answer from the
assuming: a. simplified
equivalent system in Fig. 2.

following relation,

Fig. 2 The simplified equivalent system
of the marine Diesel engine shsfting
2 2
R T T e
— (keybhey) correeeeees eeseriens e (13)
M, e, correspond. to crank
throws, thrust block and propeller. respectively
and k.., k. are stiffnesses between them,

where. m.,,

3. 2 Influence numbers of a unit crank
throw.

i Consider a single crank throw, and define
its axis of rotation from. fore-end to. rear to
be X-axis, with its origin at the middle point

g

of the fore journal, combined with Y-and
Z-axis, which are parallel and perpendiculér
to the crank arm respectively. As to angular
displacements around these axes, 6,9, ¥ co-
respond to X, Y, Z. The followings give
influence numbers of this throw under vari-
ous. end loadings. »

3. 2.1 Influence numbers under loading

in X-direction.

As shown in Fig. 3, fix B-end and put a
unit force Fx=1 onto the simply supported
end, A. Since influence numbers, in this
case, are X-, 8-, @- and ¥- displacements
divided by Fx, the deformation of this inde-
terminate structure should be solved. At first
the indeterminate fixing moment at B, a, is
derived, supppsing B-end simply supported,
as a moment that cancels out the ¥-displa-
cement at B due to Fx=1, ¥s. Such elastic
deformation is easily obtained by applicatién
of Castigliano’s theorem, which generally
gives enough accuracy in spite of neglecting
strain energy caused by stresses other than
bending and twisting. '

Fig. 3 Force and moment induced by the
loading in X-axis

Thus, »
__—2Rb(a;+b) , —R(ai+b)
Ve=—"1gs, * IEJs

where E is Young’s modulus, and Fi, Jo Jz
denote moments. of ipertia of; sectional area
around Z-axis corresponding to crank pin,

-+ (14)

journal and arm respectively.
Angular displacement due to a unit mom-
ent at B-end around Z-axis is.
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UVp = @'+l (a,+20)° (a,-+2b)' ~a;’
BEjll’ 3E]-gll
Ria'+(I—a))’
+—110—E—JT———l ..................... (15)

From (14), (15) and Fx¥s+-a¥’'s=0
2Rb(a;+-b) + R*(a,+b)

_T IEJ], IE].
“a F 1= (a,+2b)° + (a\+2b)3—a3
3EJ\I 3E],l?
{a21+([_..a2)2}
LI o) 77

Then X-displacement of A-end, X4 is derived
and leads to the expression of the influence
number in X-direction due to X-forces, fxx
=X4/Fx, i.e.,

+2b) (@, +2b)?) ] E] ,2 {(zmﬂ 2IR
a(al+b>+"§(3a21+6a1b+4b2)}

+ [ %lsz—lRa(l—{-al—az)

R
EJI*|
+at{a+U-a)') |

Since ©- or @-displacement of A-end does

not occur
feX = (Qerrenererennnenenenatenie e ‘(18)
f¢x I (Qereeenrennenerennienaraen et (19)

Further, the relation fij=fi holds for any i
and j as the result of Maxwell—Betti’s reci-
procal theorem.

In case Ji=],=J and a,=a,=a, Egs. (16)
and (17) are. simplified as
2 (2 , R
_ 2(-7+71.)
. Ria*+(l—a)'}

3/ '

Ixx=‘b='}p ( (9‘-2395) +2b{ (R)!~I'Ra

1 9 ] aza
+1 ot (30" +6ab-+40") } 22 {1

R
EJzl?

+
+l(a+2b)+(a+2b)’} ] +

B HEEREHY WK AT 7

[ 2rR-I'Ratat { @+ (=)' b

If more accuracy is desired, shearing. de-
formation of arms may be added, resulting in

L 12(R—d)
fxx!= 5Gwh

where d is the outside diameter of pin and
journal, while w and h are side lengthes of
the rectangular arm section parallel to Z- and
X-axis respectively.

3.92.2 Influence numbers under loading
around X-axis.

Similarly the indeterminate moment around
Y-axis at B-end, B, is derived and then the
influence number foo is calculated. Especial-
ly for the case J,=J.=], Ji=J» and a,=a,

Ty

0

Fig. 4 Force and moment inducd by the
loading around X-axis

2Rb R?
g 1G] TIET
Tl L 2R Rl@+0-a%
3E] ' I’'GJ» I’GJy
+_»2_RL .................................... (21)
RIS
_ 2 b Pl
fee——GT{aJr,z (-8R} +4p7
EJ Iz(lZ—EﬁR-i- LaRy
G:B}}le {a2+(a_l)2} .................. (22)
Fug = Qrereesenennensire s (23)
Where G is the modulus of rigidity, Ji and

J» are polar moments of inertia of journal

p—
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Ef

and pin section respectively, J., J, are mo-
ments of inetia of arm section about X-,
Y-axis respectively and J,=cwh, c being a
constant depending on the ratio w/h.

3,23 Influence numbers under loading

around Y-axis.

In this case also, the indeterminate mo-
ment around Y-axis at B-end, 7, is derived
and influence numbers, foe, foo are calcul-
ated. For the case, J,=J,=]J and a,=a,=a

“y

~
=54

LSRN

B

VR TTRITRT

X
e e e

Fig.5 Force and moment induced by the

loading around Y-axis

- [_lﬁ . 2Ra(a—1) 2R?
yo L GE[ T GLIT TBELIT
l + 2bR? + R{aﬂ—}—(l—a)ﬁ}w
3E] ' GJ,l? I'GJ,
2bR?
TG (20)
+ 2R?
3EJ.T |
! 2R (14 1)*
foa= 3ET {1+7’<T“‘1) } +— GIal®
o L= (Lna) o Uy (141)a) ]
+2R (147)°
W ........................ (25)
_ AQ=2y) , 2bRO+1U-6R)
foo== 6ET + GIoI*

g lall= (el =D 1y

R:(r+1) (31~ 24R) ,
3BT (26)

Jum=0reerereerereiiiiin e (27)

= (147)a} 1+

SR

3. 2.4 Influence numbers under loading

around Z-axis.

After deriving the indeterminate moment
around Z-axis, p, influence numbers, fuv
and fxv are calculated. For the case J,=],

=] and a;=q,=aq,

N
=
S|~
P—R-—‘
Sk
T~
NN\

Mea! € ’é_u,—.——-zzinimal- Z e
m -

Fig. 6 Force and moment induced by the
loading around Z-axis

1 2Ra(a—-1)

e o ey~ el

O R@Hi-a)]
3] J:l?

quf:Elf{ —%(Pfl)z‘p } +T%§‘
[{{-(e+Da}?+{lop— (p+1)a}?] ---(29)
from—if [ AEL {a'+141(as20)
2

f]ﬁ [lgR— (d

+(atobyy -1 ] +

DU A+AR+al + 2L [

+2b)’+a(a+2bj+az} ]+7§£'2‘f { {l

- (l—l-p)a} ( % —aa)

+{to-otva} {at-0- £} ]

3. 3 Stiffness matrix of a single throw
which is in plane xy.

If X-, Y-, Z-axis of the unit throw coincide
with x-, y-, z-axis respectively, the influ-
ence numbers derived as above lead to a
relation of forces and displacements as
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X4 fxx 0 0 Sxv F4
ba _ 0 fee Jeo 0 Mxa
Pa - 0 foe foee O Mrya
Pa \Sfex 0 0 Sou Mza
.......................................... (31)
OF {Xa) =[Faal{Fa) creevevrereervinannnn. (31)

where [Fa4] is a symmetric matrix, and
may be inverted into [Kaa] which is a stiff-
ness matrix in case of B-end fixed and A-
end loaded:

kxx 0 0 kxy

0 kee
0 koo kes 0
\kvx O 0 kyv

[Kaa]=

where

— Juv -
kXX - fXXf\ll\ll— (f‘\r)w kX\l/ —k‘llx
S . SN S ;. S
Sxxfov—(fxe)?’ "% 7 foofve— (fou)?

—foo
foef“’" (few)‘Z ’

fe

— 1]
kea = Soefoo— (fo2)?’

_ Sxx
byv = m ......................... (33)

r {Fa} =[KaaJ{Xa} -+ocereoeerermnnrenennnn, (32)

The reaction matrix at B-end, [Ksa], is
derived from the relations equating external
forces;

LF=Fa+Fs=0

YMx=Mxa+Mxz=0

ke¢ =k¢3 =

ZM‘v:li « Mxa - 1+MYA—(—1—_I*‘—0 .
Myal+Myrs=0
YM,=—afl « Fa . l+MZA_(1#*)"MZA .

I+Mza=0

or
Fs /=1 0 0 0 Fa
Mxs _ ( 0 -1 0 0 Mxa
Mys | k 0 -8 s 0 Mya
Mzs a 0 0 p/ “Mza

.......................................... (34)
From (33)" and (34)
—kxx 0
[Ksal=| © ~ koo
0 (— Bkoo+rkss)
(akxx+-pkex) 0
0 —kxv
—koo 0
(= Bkes-t-Thos) 0
0 (akxy--phkvv)
.......................................... (35)

As for stiffness matrices in the case of
reversed boundary conditions: A-end fixed
and B-end loaded, every element has defi-
nitely the same absolute size as the corresp-
onding one of [Ksa]l and [Ksal, but not
always the same sign. They are

kxx 0 0 kxv
[Kosl= |0 Feo —hoe 0| (35

0 “'kd)g koo 0

kevx 0 0 kv

and
—kxx 0
[Kas] = 0 ~koo
0 (Bloo — Tkoe)
(akxx+pkvx) 0
0 —kxy )
koo 0 |
(~Bkaotrhos) O J
0 - (akxv-pkev)
.......................................... (37)

Combination of these matrices gives an

overall stiffness matrix as

where [K%4%] is a symmetric matrix, al-
though its diagonal elements from upper
right to lower left appear unsymmetric. Ac-
tually numerical calculation proves the sym-
—kxv=a kxxtpkvx, and

metry, giving
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kot = — koot Tkes.

This symmetry-characteristic of [K4%]
serves to check derivation error of the matrix

elements.

3.4 Stiffness matrix of a single throw
which is not in plane xy.

As shown in Fig. 7, give plane XY a
negative rotation around the common axis
X or x by & from plane xy. In this case,
stiffness matrix based on y-and z-axis is not
equal to [Ka4] in Section 3.3, but may be
derived considering the effect of rotation on
the element of [Kaal.

Among the sikx ele-
ments, kxx and kge
are unchanged, as x
and X are coincident.
Projection onto y-and

z-axis of a moment

around z-axis amou-
nting to kex multip-
lied byya unit X- or
x-displacement gives

Fig.7 The throw devi-
ates from plane Xy

kox=kux sine

Box = Byx COSE «orrreressrermmmrmrenioiuesinis (40)
Similary, projection of ke multiplied by a
unit displacement around X or x on to y- and
z~axis gives

kos=Fhag COSE +ereerrens Faveeretneneeeanaiieies (41)

Boo=Fog (~SINE) +rererrreeesioreennineninin, (42)
A unit angular displacement around y-axis
méy be composed of @-component, cose, and
¥-component, sine. These components may
be derived from moment ZAsecose around Y
and moment Rvesine around Z respectively.
Finally, projection of the moments on to y-

and z-axis gives

fats
o~

koo= FbaaCOS et RywSInie corrererersiiieiins (43)

ks =sinecose (— koo - 2% EXTTETERIPEPRPITS: (44)
Similarly a unit displacement around Z-axis
leads to k¢ =Fkyp and

Ry = EoaSIiN?e -} RywCOS%E «rerrieririeiens (45)
Let cose=2 and sine=p
Then, the stiffness matrices based on y-and

z-axis are as follows:

kxx 0
_ 0 koo
[EAAT= | phour 2kos
Akyx — koo
y3% Akxy
koo —pkgo

(Rkoot prhvy) (— Apthoo—-ptAkey)
(-— ,ka:pm"'l/lkww) (ﬂzkcbd: +22kw~y)

and

—kxx 0

0 —keo
plakxx+tpkex) A(—BkeatTkac)
Aakxx+pkvx) —p(—Phoe-t+rkoe)
"‘/lkxw

— koo »

A(— Bkeo-trkos) +pt (akxy +-pkyy)
-}ll(—ﬁkgcp-{—fkoo) - Au(akxvy +pkvy)
— Akxv

ﬂkecb

2 Bheot-1koe) + (pAakxy +pkoo)
pz(‘ﬂkeo-!-rkocb) J- 2 (akxetphvy)

kxx 0 thxv
0 kea - Xk’e@
phyx — koo (22k¢0+#2kv\r)

Akvx pkae  (— pAkss - Apkey)
Akxv

[lkotb

(= Aphootpibee) | 48)
(tkoo-Atkey) /
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—Fkxx 0

0 —~ koo
ulakxx+pkvx)  A(Pkee—Tkes)
Aakxx+pkex)  —p(Pkeo—rkos)
— pRxy

koo

22(— Pkes+trhov) -2 (akxvpkyy)
PA(— Bheaw-t+Thoo) +Aulakxv+pkev)
— Akxy

—/Jkeo

Au(-Bkes-trkos) + pA(akxe -t phyy)
2 (-Pkea-tr1hos) 42 (akxe--pkyv) ,

.............

Matrix (50) is also symmetric as (38).

3.5 Stiffiness matrix of a round bar.

Intermediate shaft, thrust shaft, propeller
shaft and coupling parts of the crankshaft

may be represented by simple round bars.

MUK -H RS WK AT 1

The stiffness matrix for each of them has
the expression as

EA/l 0O 0 0

0 GJ/! 0 0|
0 =[Kbss]

WKasl= 1o o 4EJN
0 0 04EJ]/!
fesreene berersorers PIUPPP (51)
“EA/l 00 0 0
0 —GJ/! 0 0

[Ksad = 1 0 2Ej/1 o LKasl
0 0 0 2EJ/I
.......................................... (52)
'Kaa : Kas

[K43] = [ ............. } ...................... +-(53)
\Ksa : Kss

Where [ and A are the length dnd sectional
area of the bar and other symbols are the
same as above.

Except coupling parts they may be supposed
to have only two degrees of freedom; x-and

(51), (52) and
(53) may be reduced to matrices with two

f-displacement, then Egs.

columns and two rows.

4. Numerical analysis and comparison of calculated to measured values.

4.1 Specifications of analyzed engines.

Assumed name of ship i S J B l M
Kind of ship ] Cargo ship ] Cargo ship ] Oil tanker
Grose tonnage (F) | 8,515 | 6700 | 72,000

Type of main engine J

2-cycle single-acting cross-head type.

No. of cylinders- _ _
bore ok ey | 8—720x1,250 | ox7ao-1600 |  10-860x1,600
Out-put (P.S.) X
ook M) | 6100%137 | 8000x110.5 | 23,000X115
Brake mean effective
ake mean crective | 5.0 | 650 | 0w
Firing order | 1-8-3-4-7-2-5-6 |  1-8-3-6-5-4-7-2-9 | 1-8-6-5-3-10-4-2-9-7
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X %

Type of crankshaft l Forged steel

semi-built X 2pcs.

Cast steel {
full-built x 2pcs.

Forged steel
semi-built X 2pcs.

Propeller 5, 10%5>< 4 blades

5, 806¢x4 blades [ 6, 65Sg><6 blades

Bolted to

Thrust block engine block

Founded on

Bolted to
’ engine room floor

Attached to

|
|
} engine block
J
|

|
|
|
|

Balancing weight No.1,4. 5,8 throw None
Engine position Midship Midship [ Aftship
Skelton diagram of . . .
crankshaft Fig. 8 Fig.9 , Fig. 10
PP sdinid
I{I” 4
%, T
§*1~ -4;
-3
030

Fig. 8 Crankshaft skelton diagram
of Ship S

Fig. 10 Crankskaft skelton diagram
of Ship M

4. 2 Numerical Calculation.

Every of the three shaftings, S, B and M
was divided into 15 equivalent inertia bodies
and all matrix elements were calculated with
a digital computer HITAC 5020F in order to
built up square matrices of order 50, 52 and

Fig. 9 Crankshaft skelton diagram
of Ship B

54 for S, B and M respectively. They were
solved on the same computer in 58, 67 and
73 seconds respectively, giving 50,52 and 54
eigenvalues (natural frequencies) and corres-
ponding normalized eigenvectors (modes) succ-
essively printed. The calculated data are sh-
own in Table 1,2 and 3. Table 1 shows cal-
culated indeterminate fixing moments defined
in Fig, 3,4,5 and 6. Table 2 shows calculated
influence numbers. Table 3 shows calculated
stiffnesses.

Every mass moment of inertia amounts
to the same as that derived at conventional
torsional vibration analysis, while the entr-
ained water mass is supposed to be 60% of
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Table 1. Calculated indeterminate fixing moments defined in Fig. 3,4,5,6
cm-kg
Ship l a X 10? B ] r o
S [ 0. 4766484 0. 3622307 ! 0. 3358176 0. 5969501
|
B 0. 6300806 0. 3336151 l 0.2690116 0. 5762000
1 0. 6292483 0. 3524626 0. 1391534 0. 5050736
Table 2. Calculated influence numbers cm/kg, rad/cm-kg
Ship ‘ Sxx X107¢ fxw=fwx1(>)<_e fea X107° oo =f¢1°0>—<-10 feax  107° fweX 1070
S 0. 4496945 0. 3368360 0. 3045998 0. 9203019 0. 1687456 0. 1128526
‘B 0.7174846; 0.5144534 0.1936225[ 0.8283117 0. 1814925 0.1286133
0. 3064232 0. 2035474 0. 1095262 0. 3939575 0. 083882 0. 0515970
Table 3. Calculated stiffnesses kg/cm, cm-kg/rad
Ship bxx X177 ‘kxw:k")fw“ koo X101 ,kw,:kd’)?lo‘“ koo X101 kee X 10U
S 0.2864036| -0.8548406/ 0. 3930685| -0. 2143710 0. 7095218 0. 1141259
B 0.1954258! -0.7817030; 0.6417693] -0.2928964 0. 6846616, 0. 1090205
M 0. 4422336/ -1.7445880| 1.0985990 -0.5169265 1. 4343540 0. 2626329

the propeller.

4. 3 Natural frequencies and

vibration modes.

4. 3.1 Natural frequencies

The calculated and measured natural fre-

quencies of Ship S, B and M are shown in

Table 4,5 and 6 respectively, where the st-
ars indicate indistinct measurements.

In author’s calculation the stiffness of thru-

st block was iteratively adjusted so as to le-
ssen the differences between calculated and

Table 4. Comparison of calculated to measured frequencies of Ship S

Conventional Holzer method Author’/s method. Author
Measured k,=0.60x10%%g/cm according iteratively derive %k,=0.90x 107
Mode to Anderson’s kg/cm
values Torsional Axial | Cal./Meas. | Calculated Cal. /Meas.
1-node Tor. V.P. M. ¥ 191. 68, 189. 28
0-node Axi. 985 969. 41 98% 963. 79 98%
1-node Axi. 1064 1103. 54, 104 1034. 46 97
2-node Tor. 1101 1093. 68| 99 1057.19 96
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Table 5. Comparison of calculated to measutred frequencies of Ship B.

. Conventional Holzer method Author’s method.
Measured l k,=0.20X10"kg/cm Author iteratively derive
Mode ' l according to Anderson’s ky=0.20X% 10" kg/cm

values [ Torgional |  Axial |Cal./Meas. | Caleulated Cal. /Meis.
1-node Tor. V.P. My 149. 60 144. 78
0-node Axi. 513 549. 48 107% 495. 57 97%
1-node Axi. 765 769. 94| 101 753. 65 98
2-node Tor. 844 827.03 98 814. 44 97

_, Table 6. Comparison of calculated to measured frequencies of Ship M

Conventional Holzer method

Author's method. Author

Measured | k,=0,221x107kg/cm according to iteratively derive
Mode ° Anderson’s k;=0.230x10" km/em _
values Torsional | Axial | Cal./Meas. | Caiculated | Cal./Meas.
V.P.M . e
1-node Tor. 376 388. 30 103% 375.03 100%
0-node Axi. 628 660. 00 105 623. 98 99
2-node Tor. 1017 1053. 40, 104 1015. 18 100
1-nbde Axi. A 1376. 40 1364. 02
mieasired frequencies and modes. For the mode) is about 2% smaller than the teasured

calculation of the axial vibration by Holzér
method, Anderson’s formula was used, which
gave the best result among various empiri-
cal formulae. (@@ ®H®O UL Provided the thru-
st block stiffness is 0.60x10%kg/cm, the
nodeless axial natural frequency of Ship S(1st

Table 7 Estimation of thrust block stiffness.

one and that of one-node (2nd mode) is about
49; larger than the measured one. Supposing a
stiffer thrust block in order to correct the
calculated nodeless frequency, the difference
between the calculated one-node freduency and
measured one becomes still bigger.

kg/cm

The iteratively

Formula  (13) derived values.

Ship Formula (12)
S 0. 905X 107
B 0.183% 107

M 0.240% 10’

0.912x 107 0. 900 X 107
0.215x 107 0. 200 X 107
0.279% 107 o 250 X 107

Table 7 shows stiffness estimations derived
from formula (12), (13) and the above men-
tioned itération.

Fig. 11 shows the so-called frequency spec-
trum, the relation between frequency and
thrust block stiffness. Seven natural frequen-
cies of Ship S and six of B, which come in-
to question in view of the crankshaft vibra-
tion, are plotted. The interesting feature of
Ship S is the adjacent location of the one-

node ax1a1 frequency to the two- node torsio-

nal one, what suggests a strong Ccoupled
axial-torsiomal vibration at this engine speed.
Actually the measured result on board backs
up this assumption. Thesé frequencies scarcely
depend on the thrust block stiffness as it is
shown in Fig. 11, because the node of one-
node axial vibration is located close to0 the
thrust block. In such a case, mnobody can
shift the one-node frequency, i. e: the strong,

—_—16—
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coupled axial-torsional frequency by changing
the thrust block stiffness.

As for Ship B, the one-node axial frequen-
cy approaches the two-node torsional with
increasing block stiffness up to about 0. 50X
10" kg/cm, where the two intersect. This
suggests a strong, coupled vibration and a
possible shaft danger nearby. In this case
also, seperation of the two from each other
is difficult, so that a remarkable coupled vib-
ration appears, even when the thrust block
stiffness is fairy below the dangerous mea-
sure.

By making and discussing such a spectrum
in the design stage of a ship, it would be
possible in advance to find remedy for cou-
pled vibration troubles or to select the most
suitable thrust block stiffness. On the other
hand, the effect of the thrust block stiffness

-~
3
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Fig. 11 Frequency spectrum
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Fig. 12 Relative axial amp. of Ship S at crank-
shaft

on uncoupled torsional vibration is little. In
addition, Ship M did not show a coupled vib-
ration as S or M.

4. 3.2 Vibration modes.

The upper part of Fig. 12 shows nodeless
axial vibration modes of Ship S. The 13*%
order, measured mode agrees best with the
author’s calculation but the others deviate a
little at No. 3 and No. 4 measuring point. The
figure below shows modes of axial vibration
accompanied with the two node torsional vib-
ration, which has never been analyzed so
far. The calculated mode excellently agrees
with measured ones, which appear to be
nearly constant between Pt.1 and Pt. 3, the-

nce to descend.
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Fig. 13 Relative axial amp. of Ship B at
crankshaft

The upper part of Fig. 13 shows node-
less axial vibration modes of Ship B, where
the calculated mode agrees on the whole
with measured ones.

The axial vibration modes of the figure
below accompanied with two-node - torsional
vibration, are rather singular, compared with
those shown above. The ordinate represents

the measured axial amplitude in mm and also
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the reduced calculation based on the relation,
equating the torsional calculated stress at Pt.
8 with the corresponding measurement. Al-
though the comparison is not proper due to
lack of data at the second throw, the calcu-
lated mode on the whole resembles the mea-

X &

sured one except the fore-end. This deviation
may be attributed to incomplete description
of experimental system, which had a plunger
type bilge pump at the fore-end, while the
calculation has assumed a pumpless system.
Table. 8,9 and 10 show relative amplitudes

Table 8 Comparison of crankshaft fore-end amplitudes of Ship S.

Mode x dés2 de/2 [ dg/2
1-node Tor. 0.540x10™? 1. 000 0.565% 1073 0.342x107¢
0-node Axi. 1. 000 0.235x 1071 0.237x107? 0.101x 107!
1-node Axi. 1. 000 0.109 0.127%107? 0.125x 107!
2-node Tor. 0 421 1. 000 0.191x10™ 0.537x107*
3-node Tor. 0.201 1. 000 0.436 X107 0.313x 1071
4-node Tor, 0.439 1. 000 0.676X1071 0.602%107
2-node Axi. 1. 000 0.781X107! 0.119%x107! 0.899x107!

Table 9 Comparison of crankshaft fore-end amplitudes of Ship B.

Mode X dé/2 do/2 ] dg/2
1-node Tor. 0.512Xx10™* 1.000 0.657X107% 0.719x 1073
0-node Axi. 1. 000 0.483%X107 0.199% 1072 0. 250 X 1072
1-node Axi. 1. 000 0.597x 107! 0.621x107? 0.547 %107 ‘
2-node Tor. 0.187 1. 000 0.203x 107! 0.242X 107!
3-node Tor. 0. 407 1. 000 0.515% 10"t ©0.669% 107!
2-node Axi. 1. 000 0.157x107! 0.222x 107! 0.263%107!
4-node Tor. 0.486 1. 000 0.872x107! 0.112

- Table 10 Comparison of crankshaft fore-end amplitudes of Ship M

Mode x a6/2 do/2 dag/2
1-node Tor. 0.142 1.000 0.259% 1072 0.255X 102
0-node Axi. 1. 000 0.161x 1072 0.191x107% 0.437x 107
2-node Tor. 0.481X 107! 1. 000 0.191X 1071 0.174X 107
1-node Axi 1. 000 0.904x 1072 0.553x 107 0.209x 10!
3-node Tor. 0.931 1. 000 0.689x10™ 0.925x10™!
2-node Axi. 1. 000 0.774x107! 0.469%x1072 0. 466 x107!
4-node Tor. 1.244 1.000 0.145 0.204
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of x, 0, ¢ and ¢ of the crankshaft fore-end,
where 6, ¢ and ¢ were multiplied by the ra-
dius of journal, for the sake of vivid compa-
rison of torsional, lateral and another
lateral mode with the axial one on the same
scale. It is clearly seen, that ¢- and ¢-amp-
litude become relatively larger as the natural

frequency increases.
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Fig. 14 Relative amplitudes Ship S (calculated)
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Fig. 16 Relative amplitudes Ship M (calculated)

ordinate represents the ratio of x or d6/2 to
the fore-end torsional amplitude in case of tor-
sional and axial-torsional vibration and also
the ratio of x to the fore-end axial amplitu-
de in case of axial vibration. In Fig. 14 and
16 are shown also curves derived from the
conventional Holzer method, using Anderson’s
formula for axial stiffness and engine-maker-
’s own empirical formulae for torsional stiff-

ness.

4. 3.3 The influence of crank throw
arrangement on crankshaft vibration.

It is expected that the arrangement Of cr-
ank throw affects the vibration of crankshaft.
Here will be investigated the crankshaft without
any balance weight for Ship S.

Three kinds of firing order shown in Table 11
are adopted in practice for 2 cycle single act-

Table 11 Firing order of 2-cycle single acting 8-cylinder engine *

Kinds of firing Firing order ‘ No. of examples Remarks
A 1-8-3-4-7-2-5-6 ‘ 6 Firing order ship S
B 1-8-3-5-2-7-4-6 2
C 1-7-3-5-4-6-2-8 1

Fig. 14, 15 and 16 show relative amplitude
curves -of Ship S, B and M respectively. The

ing marine diesel engine in Japan.
Table 12 shows smallest natural frequencies
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Table 12 Natural frequencies for various firing orders for Ship S.
ko=0.90% 10" kg/cm

Kin_d§ of 1-node 0-node 1-node 2-node 3-node 4-node 2-node
firing torsional axial axial torsional torsional torsiona axial
. V.P.M. | i '
189. 28 963. 79} 1034. 46 1057. 19 1683. 47I 2129. 65 2792. 04
|
189. 31 932. 75! 1024. 72} 1088. 99 1683. 05 2143.50 2708. 57
‘ I
189. 281 943.73: 1027. 29’ 1080. 77 1683. 67i 2139. 68 2759. 38
i ! j
o ky —k
i\ | '{ ( B o vomsd ~ky (Btk) k- 0
‘ b : .
0b { . .
v . .‘
8% Lol | ] [K*]= — ki (ki+ki+1) — ki
iaz ! E -LW M_’,""MM—: | .
2 Tt e T :/' ) i S
e e 0 e (likh) <k
_"g ac:.w/ﬁ} N ,/«’"'/ . ? ' :
"(M. i i \ ////// ) ) v—vkp kp
08 | AL [ v '
o l ! \ ’1:‘{;\/[:': ’T/ .......... SARLARLD (54)

v ki are uncoupled axial or torsional stiffnesses
Fig. 17 2-node torsional amplitudes and the :

coupled axial ones for various firing ord- ] : o
ers of Ship S other empirical formulae and k. represents

the thrust blcok stiffness.

Axial influence number:

which are derived from formulae ‘55,56 ‘or

corresponding to the three firing orders. A-
mong them, two-node torsional vibration,

which often couples large axial vibration on fx= ZR]b (R— 2& ) - 3%;1}22 (R—&x)

midship engines, is shown in Fig. 17. T (55)
From Table 12 and Fig. 17 it can be dedu- Torsional influence number:

ced that the effect of firing order(arrange- 820Rb

ment of crank throws) is generally stronger on Jo= j < e Ef (R-

axial vibrations than on torsional vibration, Rzee ) et (56)

except those which accompany strong axial

vibrations. - Hence it is possible to reduce add- where &x=fxv/frv, &o=fou/foo.

itional stressing due to axial vibration, ci- All symbols in formulac (55) and (56),

oosing an appropriate firing order. Anvhow fxv, fev, foo and foo have the same

. . meanings as in Section 3. 2.
such a- means arises, provided the coupled tor- ing !

sional-axial vibration has been solved. Natural frequencies were calculated on "HI-

, TAC 5020E, utilizing the same program as
5. Application to the uncoupled

. R for the coupled vibration. They are compared
vibration analysis.

with the solutions of coupled system in

The stiffness matrix of uncoupled vibrating Table 13 and show little difference except the
system is derived with the same method for cases strongly coupled. Also the wvibration
a coupled vibrating system as follows modes scarcely differ, although the axial ones
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Table 13. Comparison between calculated natural frequencies with

and without coupling.

Ship S | B .
Mode Measured zvoﬁgﬁﬁg \ Z?JEH ng Mﬂltioi | Measured Wgtli)gtzzo;;il(;'?g

values ko =10(57%(4)g>/<cm1ka :100‘72277”” With cou. values | © T kglem
1-node Tor. *| V.P.M. 189. 19! 189. 28 1.00 144.83
0-node ' Axi. 985| - 983. 23 963.79 1.02 513 502.63 -
1-node VAXi. 1064 1046. 15" 1034. 46 1.01 765 739.00
2-node Tor. 1101 1050. 507 1093. 68 0.96 844 805. 60
3-node Tor. 168146 1683.47 1.00 1303.86

j
\ M

With coupling Without cou. \ Measured ‘Without couplingl- With coupling | Without coﬁ.

ke=0.20X 107 |—— | | k,=0.25X107 (£, =0.25X107 |——————
kg/cm With cou. ! values kg/cm kg/cm With cou.

144. 78 1.00 376 375. 38 375.03 1.00

495. 57 1.01 628 632. 76 623. 98 1.01

753. 65 0.98 1367. 36 1364. 02 1. 00

814. 44 0.99 1005 1002. 52 1015. 18 0.99
1303. 80 1. 00 1898. 38 1866. 54 1.01

are different a little.

The computation was carried out in 4 se-
conds, giving 15 frequencies and normalized
vibration modes succesively printed. About 4
séconds are also necessary for the same com-
puter to solve 6 pairs of frequency and
mode of an eight mass (6 cylinders, flywheel
and propeller) system with conventional Holzer
method, which necessitates in advance as
many frequency approximations as required

solutions.

6. Conclusions.

From the above analysis the following con-
clusions may be drawn :

(1) A new equivalent model of cranksfaf
is contrived, which enables to analyze axial
vibration, torsional vibration and two kinds
of lateral vibrations without isolation from

each other applying matrix technique.

(2) For this model system a method of

solution is developed, utilizing the matrix
technique and the digital computer. This me-
thod has revealed the coupled axial-torsional
solution for the first time. Furthermore,
every required frequency and mode are given
at a time, though a rather bigger computer
is necessary for a multi-cylinder engine sha-

fting.

(3) Theoretical formulae to derive crank
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stiffnesses from shaft dimensions are obtained
and a method to estimate thrust block stiff-
ness is proposed, combining measured freq-
uency of nodeless mode with the equation of
inertia force balance

(4) Eight cylinder semi-built, nine cylinder
full-built and ten cylinder semi-built crank-
shaftings were analyzed with this new method
and comparison between calculated results and
measured ones show fairly excellent agree-
ment. The results were also compared with
those which were calculated with conven-
the effects
of shaft dimensions were examined.

Their major results are as follows:

tional Holzer method. Further,

(1) The natural frequencies and correspo-
nding mode shapes of torsional vibrations
solved with the author’s method are not so
different from those usual Holzer solutions.
Even in the case of strongly coupled axial-
torsional vibration, the difference is not so
great, but the usual method does not give the

accompanied axial vibration mode.

2) The axial vibration mode, calculated
with the usual method is different from the
‘author’s solution and the usual method can
not give the uncoupled axial vibration mode.

3) Being the thrust block stiffness as sm-
all as the one of the independent block fou-
nded on the engine room floor, the stiffness
strongly affects the axial vibration frequency
depending on the mode shape of axial vibra-
tion. On the other hand, effect of thrust
block stiffness on the torsional vibration is
little except the case of strongly coupled
vibration.

4) The arrangement of crank throw con-

siderably affects the axial vibration but has

wooxX %

only a little effect on the strongly coupled
torsional vibration but has only a little
effect on the strongly coupled torsional vib-
ration. Therefore, the author proposes the
firing order selection as a means to control
the coupled axial vibration.

(5) The author’s method also applies to
uncoupled vibration analysis on digital com-
puter more conveniently than the usual Ho-

lzer method.
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Construction and Characteristics of High Power Ultrasonic Generator ,
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Abstrat

A high power ultrasonic generator was constructed to improve the quality of fuel 0il by means of ult~

rasonic treatment. This generator consists of the high frequency oscillater and the magnétostriction
transducer made of nickel core.

The oscillator is operated at 30 kHz and its power is about 1,8 kwatts.
This paper also presents the structure of the ultrasonic generator and measurement of its characteistice,
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