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A Decoupling Analysis of Object Transport of

Two—Arm System
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Abstract

This paper presents a new control scheme for decoupling the dynamics of two
coordinating robot manipulators. A simple full-state feedback scheme with configuration
dependent gains can be devised to decouple the system dynamics such that the dynamics of
each arm and that of an object held by the two arms is independent of one another. As an
example, the proposed control scheme is applied to coordinate the motion of a candidate
two-arm system; a parallel-connected system composed of two motor systems whose shafts
are coupled together by a spring-and-damper coupling. The advantage of the proposed

scheme is that the same control scheme can be applied for both the closed kinematic

chain(object-grasping) case and open kinematic chain(no object-grasping) case.

1. INTRODUCTION

Many tasks arise in assembly, repair and inspection that require multiple robot manipulators to
perform in a coordinated manner. A multitude of challenging research issues arise from multi-arm

coodinated control[1-5]. One of the fundamental problems that control designers face is the fact that

» gs|Fdista 7 AT



H ¥ 4

a dual-arm robotic system manipulating a common load is described by ;:1 closed kinematic chain,
resulting in system dynamic constraints and a reduction in the degrees of freedom [6]. In [7],
Ahmad and Luo described a technique for coordinated motion control of multi-arm manipulators for
welding applications. There, a redundant manipulater with seven degree-of-freedom is required to
weld on specific trajectory along a table. Constraints on singular conditions and motion limits are
incorporated into a performance measure to be optimized. The approach requires off-line path
planning and, in effect, uses a master/slave control scheme. Carignan and Akin [8] transformed the
dual-arm problem to a hierarchial control structure whereby a complete minimization is performed on
a reduced-order model of the system in order to construct the payload trajectory; then a parameter
minimization is done to find the force distribution of the arms on the payload. This approach yields
a suboptimal solution but incorporates the dynamics and control issues into nonconflicting
performance measures.

Seraji [9] develops an adaptive position/force control appoach to the dual-arm problem. By
employing an adaptive PID struture, knowledge of the mathematical model of the system is not
required. The coupling effects between the manipulators, through the common payload, and modelled
as distubances in the position and force equations which are then compensated for in the adaptation
rule. In [11] , Ro and Youcef-Toumi present a leader—follower control approach, but with a reference
model structure. The leader manipulator is directed according to a presribed reference model system
while the follower arm follows via interacting force feedback. Robustness issues of the control
scheme in the presence of actuator nonlinearities and model uncertainties as well as bounded
disturbances are presented in [12]. '

In this paper, an issue of dynamic decoupling robot arms manipulating a common object is
addressed. The object is assumed to be rigid and rigidly held by the two robot arms. Depending on
the arm configuration and the speed with which the object is manipulated, the dynamic coupling
between two robot arms and that of the object can be negligibly small and consititute a significant
portion of the overall dynamics, In this paper, a new control scheme is introduced which incorporates
a decoupling condition into the two-arm coordination problem. Stability of the approach in a linear
sense is guaranteed, while the robustness of the approach can be obtained in a manner similar to

what is shown in [12].
2. TWO-ARM DYNAMICS

The equations of motion for two robot arms grasping an object can be expressed as the
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following:
H g, +Ca, a)=Ti+ L"F (1a)
H, g,+Co(az, @)= Tot I TR, (1b)
My %+ Cylxg, %0)=— L,"F1— Ly"F, (10)

where ¢, and g, are nXx1 joint angle vectors for arms 1 and 2, x; is the »X1 vector
representing the position and orientation of the object center in the inertial space; T, and T, are
the nx1 joint torque vectors for arms 1 and 2; H,; and H, are the mass matrices of size nX#n
associated with arms 1 and 2; M, is the mass matrix associated with the object; C, and C, are
nonlinear force vectors of size nX1, respectively; and J; and J; are the nX#n Jacobian matrices
of arms 1 and 2. Forces F(F5;) represent nx1 vectors of forces and moments at the interaction
between the center of the object and the interaction between arm 1 (arm 2) and the object, and
nXn matrdces L, and L, repersent transformations associated with finite lengths between the
center of the object and the interaction points. Similar expressions for the dynamics of two-arm

systems have been used by [8], [15], and others Above expression can be rewritten in a matrix

form as
M%) x=u—C(x, x) +G(x)F )
where
d Tl Cl F
x=| q| , u=| Tyl , C=| Cf , F=[ Fl]
X0 0 CO 2
H 0 0 Lt 0
M= 0H, 0|, G= 0 . I
00 MO - Ll —_ L2T

where u is control input vector. Eq.(2) states that there are 5% unknowns, X and F, with 3 #
equations. However, 2nX1 vector F can be expressed as functions of other 3z unknowns using

the kinematic constraints imposed on the system due to rigid grasping, as shown in [8]. The

Kkinematic constraints due to the closed-kinematic chain formed by grasping can be expressed by 2n
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algebraic equations

x0=7r1(qy) = r(qy) 3

where 7, and 7, represent the object position and orientation in arm 1 and 2 cooordinates,

respectively. Equation (3) can be rewritten as

[ Aa)—x] _
a(x)—[ T(q;)_xg] 0 @

where e« represents the closed kinematic chain, and is always equal to 2#x1 null vector for all the
time. The force F can be expressed as a function of known variables. To do this, first taking the

second derivative of constraints (4) with respect to time yields

ax+a,x=0 )

and substituting eq. (2) to the resulting expression (5) and solving for F as

a.x+aMx) N u—Clx, x) +G(x) F) =0 (6)

Hence, expressing eq. (6) with respect to F and substituting eq. (2) yields the resulting expresston

of two-arm dynamics as

x=P(u—C(x, %)) —Qx @)
where

P=M7[ I-G (e,M™'G) a,M™]

Q=M"'G (e;M7'G) ! a,

and @, and @, are 2nx3n partials of constraint (4) with respect to x and that with respect to

time, respectively. The above equations of motion holds whenever (o,M ~'G) ! exists.

3. A DECOUPLING CONTROL SCHEME VIA STATE FEEDBACK
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Here, we propose a state feedback control scheme that will try to "decouple” as much as possible
the dynamics of each arm from the other as well as from that of the object we need to diagonalize

two 37X 3% matrices, namely, P and @. For this purpose, we consider

u=—K(x) x—Ky(x)x+ C ®)

where K, and K, are feedback gain matrices and feedforward term, C are defined as

Fu(ar) ku(az) Fkis(x) gular) gi(a) &i(x0)] éE
Ki=| Ku(q) knan) kn(x)| ee=| ga(q) &n(a) gulx)| . C=| <
0 0 0 0 0 0 0

The feedforward term represents the estimates of the nonlinear Coriolis, centrifugal, and gravity
forces. We note that the bottom row has to be zero because there is no control available for the

object. Each element, k; or &, is an zX#n matrix of feedback gains that is dependent on the

configuration of the arms. This is because the matrices, P and @, are control action shown in eq.

(8) to the two-arm system of (7), the resulting equations of motion, assuming C = C become

x+[ PKi(x)+Q 1 x+PKy(x)x=0 ©)

Looking at the above expression, the decoupling of the dynamics of each arm can be achieved if we
can diagonalize the coefficient matrices associated with the velocity vector and the position vector

terms. Of our prime concern is to decouple the dynamics between the two arms. This can be
achieved by choosing the off-diagonal gain elements ki, ko1, 812, and gy such that the 12-th

element and 21-th element of the coefficient matrics become null, that is,

(PK1+Q)12= (PK1+Q)21=0 and (PK2)12: (PK2)21=0 10)

For this particular case, the following choice of gain elements will satisfy the condition shown in

eq.(8):

ki =— pu L brkptanl . ke=— bz T bk tal (1a)
_ -1
gu=— bu  Dikyn and g =" Dz bakn ()
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where p; and g represent the ij-th element of P and Q, respectively. Similarly, the decoupling of
the object dynamics from the first arm dynamics can be realized by choosing k3, k31, €3;, and g3,

elements such that
(PKI +Q)31= (PK2+Q)31=0 and (PK2)13: (PK2)31=0 (12)

The conditions in (8) and (10) can not be simultaneously satisfied because there is no control
associated with the object; this is represented by the null row vectors for the last rows of K; and
K. The stability of the overall system as well as the desired performance of esch arm depend on
choosing appropriate gains for diagonal elements, k; and g; such that the individual secon
order matrix equations have stable coefficients. One complication with the above approach can result
because of the fact that these gains are configuration dependent.

The approach shown above is useful in that we can define the desired dynamics of each arm
independent of the other and of the object. Also, it is particularly useful because the control scheme
can be readily adapted for controlling the arms separately in the case of open kinematic chain (no
object-graspong mode). In case the robot arms are maneuvering in space independently, the gains
for the off-diagonal elements of K; can be set to zero. If at some point an object is detected and
the arms start manipulating the object, the gains of off-diagonal elements can be obtained according
to (8). This simple but very efficient control feature can be essential in space assembly and repair,
or even in factory assembly, where the operating mode of dual-arm may have to change frequently

from the "object-grasping” mode to "no object-grasping” mode.

4. A SIMPLE EXAMPLE

The control scheme in (8) is applied to coordinate the motion of two simple mass-spring-damper
systems(representing simple motor systems) coupled by massless object whose dynamics is
characterized by a spring and a damper(see Fig.1). It is quite obvious to see that the dynamics of
this dual-mass system can be described by

X1 = Alxl +Blu1 —hlfc

9&2=A2x2 + Bou, +hzfc (13)
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Figure 1. A one-dimentional coordination

where x;7=[ x; x;] and f. is the coupling force and is defined as f.= K (x;—x;) where the

coupling matrix K, which is diagonal matrix. We can rewrite(11) by incorporating the coupling force

relation,
x=Ax+Bu (14)

where
A= A—mK, K, , B= B; 0 . x= Xl ou=| "
hZKc AZ_hZKc 0 BZ X2 Uy

According to the proposed control scheme, we choose the control
u=—[ g1 82 &3 g4] X (15)
such that the resulting overall equations of motion become
=] ™ __-[ A —mK.—Bigy mK.—Big ] [ xl] (16)
X5 hoK.—Bygy Ay~ hK.—Bygy )

Then,the decoupling condition becomes obvious in that the off-diagonal terms have to go to zero, or
gy = Bl*thc and g3= BQ*hQKc a7

where * represents a pseudo-inverse. Finally. the decoupled dynamics of mass system 1l(or 2) can

be shaped into a desired form by choosing the gains for g; (or g3). The stability of each system
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can also be guaranteed whenever ( A;,— kK, B;) for i=1,2 is controllable.

5. CONCLUSION

A decouping control scheme for dual-arm coordination is devised. The scheme decouples the

dynamics of each arm from the other and that of the object, and utilizes a straight forward

full-state feedback with configuration dependent gains. A simple example of a linear one-dimensional

coordination is illustrated to demonstrate the usefulness of the control scheme. Based on the

closed-loop two-arm system, a syability condition is derived. In the actual implementation, a certain

form of realizing the configuration dependent gains have to be further investigated along with the

issues of stability and performance robustness.
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