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Abstract

This paper discusses vehicle-routeing and scheduling problems subject
to time window restriction and time-varying traffic congestion. Time-
varying congestion increases the complications of the problems and,
in fact, makes it challenging even to find feasible solutions.
Numerous heuristics have been developed for problems with time windo-
ws only, but few for those with both time windows and time-varying
congestion. We identify a simple yet robust monotonicity property of
arrival times, which allows us to simplify the computation. This
property enhances the performance of existing heuristics. The feasib—
ility check routines built upon this property considerably reduce co-
mputational burden.

key words: heuristic, time-varying congestion, time window, vehicle-

routeing problem
INTRODUCTION

Allocating and routeing vehicles are essential elements of distribution syste-
ms for collecting and delivering goods and services. The effective management
of these vehicles and crews requires the solution of a variety of routeing and

scheduling problems. The vehicle-routeing problem is to find the routes of
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customers to be visited that pinimize total routeing costs, satisfying some
constraints.
Since Dantzig and Ramser! first introduced a routeing problem and proposed a

1inear—programming—based heuristic, much has been done to better understand

the problem and to develop relevant solution schemes. Recently, much work in

routeing problems has been carried out to develop realistic models and ..

algorithms that can handle complications in practice. Schrage? discussed issu—  :zzg]

es in more complex and realistic routeing problem such as frequency requirexe-
nts, time windows, travel times under time-varying traffic congestion, multip—
le vehicle types and capacities, split deliveries, messy cost functions and
stochastic demands.

Among these, the time window has frequently been studied in light of the
generalization of basic routeing problems, In time-windowed routeing and sche—

duling problems, some customers must be served between the earliest and the

latest delivery times. Solomon and Desrosiers® summarized the state of the art .

in solution algorithms for this class of problems, but did not discuss any
issues on time-varying congestion(time—dependent internode travel times). How-
ever, in the presence of time windows, congestion effects become relevant,
since the temporal issue is of greater concern than the spatial one in routei-
ng vehicles. Therefore, both time windows and time-varying congestion need to
be considered simultaneously.

Traffic congestion is particularly relevant in urban routeing systems. Duri-
ng rush hours, the travel time increases dramstically in most urban areas.
This implies that the travel time over a road depends upon the time at which a
vehicle travels along the road. Assad4 addressed the issue of traffic congest-
ion in travel time determination. But little work has been done on solving pr-
oblems under tine—varying congestion. Alfa® dealt with a travelling—salesman
problem with time-varying travel time(but without time windows), and suggested
an insertion heuristic to find a travel-time—minimizing solution. To our Know—
ledge, there exists no algorithm that simultaneously deals with both time win-—
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dows and time—varying congestion.

This paper attempts to fill this gap. We do this by modifying and extending
already existing heuristics(that were originally developed for problems with
time windows only), so that time-varying congestion can be addressed as well.
This has been made possible through the identification of a simple yet handy
property of arrival time functions that allows us to derive efficient route

feasibility check routines.

- PROBLEM DESCRIPTION AND TIME FEASIBILITY CONDITIONS

First, we use the following notations:
N = the number of customer nodes:
ei = the earliest service time at node 1;
li = the latest service time at node i;
Tij{x) = the travel time from node i to node j via arc({,j), given that the
ey trip starts from node i at time x;
Tij(y) = the arrival time at node j through arc(i,j) given that service be-
ings at time y at nodt i, that is, 4ij(y) = y + 5i + Tij(y + s1),
where si is the constant service duration time for node i.
Furthermore, we use the following variables:
_{i = the time at which service begins for node i;
di = the effective latest service time at node i that allows us to mai-

ntain the feasibility of a current route.

The problem concerning us is a class of routeing problems with time windows
and time-varying congestion. Given N customers to serve, multiple vehicles are
routed for delivery of goods or services to all customers. The service start
time at node j is constrained within a time window [ej,1;}. Thus, if a vehic-
le travels directly from node t to node J,tj=rax{e;j,4ij{(ti)}. The vehicles
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leave the depot, denoted by node O, at time eo(fo=eo), and should return to
the depot not later than lo. Our objective is to find the feasible routes with
pinimum total travel time. Moreover, the internode travel time Ti5(+) is a

function of the departure time representing tipe-varying congestion, as is the

arrival time 4ij( ). In the case of pultiple links, Tij(x) is the travel time -

along the shortest(fastest) arc at time X, and the travel time function could

have kinks at time points where the shortest arc gets switched. In this sense

tij( - ) might well be called the internode shortest-travel-time function.

Now, the question is: How much is the added computational complexity of time .

—varying congestion? The answer is ‘marginal’, in the sense that it is no more

difficult to solve time—windowed routeing problems with time-varying congest-. .-

-

)

= 4

T80

ion than to solve those without, provided that the following monotonicity (of . .

arrival times) and the associated feasibility check routines are utilized.

Non—passing property. For any two nodes ¢ and J, and any two service start .

times x and y such that x) ¥, Aij(x)) 4ij(y), that is, earlier departure from_.
node i guarantees earlier arrival at node J. ’ .
This property is readily acceptable in light of the fact that a vehicle that

-~
)

St

departs later cannot arrive earlier at the adjacent destination unless it byp—. -

asses other vehicles that departed earlier. The non-passing assumption is acc— ...

eptable in most realistic situations.

With this non-passing property, we know that 4ij(-) is & strictly increasing

function and possesses the inverse function Aij~t( ). 41710 is interpreted

as the departure time at node i so that node j can be reached at time x. This -

inverse function is what simplifies route feasibility checks. It is noted that
the case of constant internode travel times trivially satisfies this non—pass—-
ing property as well, so that all discussion below is equally applicable to
conventonal routeing problems with constant internode travel times.
Let (0,i1,i2, - * * »im,0) denote a partial route comprised of m nodes in se—
quence, 11,12, * * *»1m and the depot(denoted as 0). For notational simplici-
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ty, we relabel this route as (0,1;2, . - .,n0). We say that a route
0,1,2, - + +,m0) is feasible if each node in the route is visited within
each corresponding time window.

The effective latest service start time at node ¢ on a feasible route
,1,2, - - -,m,0), denoted as di, is given from the following backward

" recursive relations:

di=nin{li, 4iti+1(di+1)}, 0<i<m1,
da=min{lm, 4alo(lo)}.

Thus.® using the inverse function Zij(-), di s of any given partial route
can bé cbtained easily from the above equations. In the absence of the non—pa-
ssing property, di’s cnannot be easily obtained. Also, the actual service
start times ¢i’s are trivially computed from the forward recursion ti=nas{ei,
Ai-1,i(ti-1)} starting from i=1.

Now, using the non-passing property and these di’s and ti’s, we can state
the ¥51lowing three route feasibility conditions: for inserting an unrouted
node 'a given route, for combining two distinct routes into one, and for excha-
nging some nodes. '
Feasibility condition 1. When node u, an unrouted node, is inserted between
two "adjacent nodes, say, s and s+1 on a feasible partial route (0,1,2, - - ,m,
0), the resulting new partial route remains feasible if fu<du, where fu=max
{eu] Asu(ts)) and du=min{lu, Alls+1(ds+1)}.

This condition implies that we don’t have to update the values of ti’s and
di’s of the original route each time a new insertion location is tried. Howev-—
er, without using this condition, we would have to repeatedly update ti’s for
all nodes coming after each insertion point and compare with li’s for the time
—vindow feasibility check. As shown later, feasibility condition 1 substantia-
1ly saves computaion time.

Next, we address the case of combining two distinct routes into one. This
perger is typically done by linking the last node (other than the depot) of one
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route into the first node(other than the depot) of the other route, in order
to ensure that all nodes of respective routes are also visited even after mer—

ging.

Feasibility conditions 2. When two distinct routes are merged into one by lin-.

king the last node 1 of one route into the first node Jj of the other route,
then the newly combined route is feasible if Aij(1i)<d;.

Here again, since we utilze only two values, ti and dj, that are already av— -4

ailable, this feasibility check is fairly simple. This type of feasibility

check is valuable to the savings heuristics based on Clarke and Wright’s sppr— -

oach, as will be discussed later.

Another generic approach to routeing heuristics is to exchange the visitati- .

on sequence among nodes within a given route, in particular, between a string
of adjacent nodes and some single node within a given route. However, exchang-

ing a set of nodes may disrupt the route feasibility, and thus an efficient

feasibility check routine is desired. L

The non-passing property and the resulting existence of AI?;( . ) satisfy this
need. Consider a route (0,1,2,-,m,0) that is currently feasible. Now a part

of this route, say, the path(y,y+1---,2) such that 1<y<z<nm, is to be moved

to other location on the route. First we can tighten up the time windows al"ong':

this path as follows:
ey =¢€'y
e = max{ei, di-1,i(e i-1)},  »1Lisz,
U’z = 1z
;= min{li A5+ (U is0) ) y<i<z-1.

Feasibility condition 3. Using [e’i,1”:)in place [ei,1i], we can state the fo—

llowing time feasibility condition:

(i) If a vehicle that departs node z at time e’z cannot arrive at node u by
lu, that is, if Azu(e’z)) lu, then the path (y,y+1,:-+,2) cannot precede
node u.
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(i) Symmetrically, if a vehicle that departs node u at time ey cannot arrive
at node y by I’y, that is, if Auy(eu) ) 'y, then node u cannot precede
the path (y,3+1,--,2).

It is noted that, once e’ i and !’y for each node on the path(y,y+1,:--,2) are
in hand, feasibility condition 3 allows us to find a new feasible location of
this path without repeatedly updating service start times of all affected nod-
es, which results in a substantial reduction in computation time.

When the path consists of a single node, we can easily get the precedence
relstionship of all node pairs from feasibility condition 3. However, this pr—
ecedence-relationship is Jjustified only under the non-passing property. Using
the relationship, we can adopt the exchange heuristic suggested by PsaraftisS,
even for routeing subject to time~-varying congestion.

ER

HEURISTICS: MODIFICATIONS NEEDED

With the proposed route feasibility check routines, we are now ready to dis—
cuss, heuristic algorithms that make use of these routines to’ solve problems
withj_ t.ime—varying congestion, Our strategy here is to develop desired heurist-
ics,:Pot from scratch, but by extending and modifying existing ones that were
origi;_xally developed for conventicnal vehicle routeing problems. We present
three generic heuristics for our purposes, namely, insertion, savings and arc
exchange heuristics. Discussion is focused on extensions and modifications re-
quired to accommodate time-varying congestion, rather than on the repetition

of details for each heuristic.

Insertion heuristic
The insertion heuristic takes a partial route and attempts to insert an una—
ssigned candidate node between two selected adjacent nodes on the route. When
there is no node with a feasible insertion point on the current route, the pr—
ocedure switches to a new route unless it has already routed all nodes. The
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process involves two substeps at each iteration: selection mode and insertion

mode.

Insertion mode. Insertion mode determines the insertion point of an unrouted
node on a given partial route. One of the most widely used insertion criteria
is the cheapest insertion? that minimizes the extra time required to visit the
inserted node. We suggest the following podified version for problems with

A 4

oAy

time-varying congestion. Suppose that an unrouted node, say node u, is to .be . | ST

inserted into a given feasible partial route. To determine the insertion point,
define the insertion measure ICiuj for a pair of adjacent nodes it and J as:
ICiuj==t3 - L, |
with
tu=max{eu, diu(ti)},

t3 =max{ej, Auj(tu)l},

SIS

o

where {i and {j are the service start times already available before inmserti=...

on, and tu a_nd f; are the likely service start times for node u and node Jj;

respectively, when node u is inserted between i and j. This measure indicates -

>

R

the delay in service time at node Jj due to the insertion of node u. Then, the

insertion position is that with minimum ICiuj.

Since the insertion of node u could alter service start times of all subseg— - ¥

sent nodes, this minimum need be taken only among feasible locations where the

time window feasibility is not broken by the insertion of node u. It is typic—

ally time consuming to identify feasible locations for each candidate inserti- .:

on node u. Fortunately, however, feasibility condition 1 makes this task simp—

le.

Selection mode. Selection mode determines a candidate unrouted node to be
inserted. The four alternative criteria used-the furthest, the nearest, the
cheapest? and Mole and Jameson’s® criteria—are available in the literature,

based upon two measures as follows:
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SCh=ptouleo) — min{ICiuj}, >0,

and

SCE=nin{Tku, (tx)},

kER

where R.is the set of the nodes on the current partial route, and node ¢ and j
in R are adjacent. Mole and Jameson’s criterion selects an unrouted node u wi-
th maximum SC4. Setting u=0, this becomes the cheapest insertion criterion.
The measure SC2 is the minimun travel time from the current route to node u7.
The fui:thést rule selects an unrouted node with maximum S&u, and the nearest
rule f inés one with minimum SC3.

Combining the aforementioned insertion criterion and each of the four alter—
native selection criteria given above, we get a set of full-fledged insertion
heuristics that can handle problems with time-varying congestion. The non—-pas—
sing property and feasibility condition 1 contribute toward making this a str-
aightforward extension.

Savings heuristic

Ariother class of construction type heuristics includes the savings heuristic
extended and modified from Clarke and Wright’s heuristic®. This heuristic beg-
ins with N trivial distinct routes on which each vehicle visits only one node.
The heuristic repeatedly combines two partial routes into one by linking two
respective and nodes while maintaining the feasibility.

For routeing under time-varying congestion, the saving Si;(+) from combining
two routes by linking the last node of one route,say node i, and the first
node of the other, say node j, is given as a function of the start service
time x at node i:

Sij(x) =Tio(x) + Toj(to) - 7Tij(x), ai <x<bi,
where a; =max{ei,doi(eo)}, bi =max{11,413(1;),41}(455(10))}. In actual implem-
entation, these savings are computed a priori for all node pairs at the same

time, and are sorted and utilized (to combine associated routes) in decreasing

order of values.
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This savings equation is to be compared with Clarke and Wright’s original

(with respective definitions), which is not time-varying:
Sij=Tio * Toj — Tij.

In our saving estimation, since it is dependent on time x at node i, we need
to set x to some fixed value to compute savings. The bound ai <x<bi, given =D
above is one way to make the bound tighter than the original time window, even aeq
thought it is not the tightest possible. For example, the saving can be compu— <
ted at x={(ai+bi)/2. T

In addition to computing and sorting the savings, we must check the time fé-..z228
asibility at every iteration. This is where the feasibility check routine of - vsw

feasibility condition 2 is employed. @

Tour improvement heuristic:

Tour improvement heuristics are often used to generate a new solution throu-
gh improvements in the current one already obtained through tour construction
heuristic. For example, in the k-opt branch exchange method presented by Lin
and Kernighan!©, k arcs are removed fron a current route and replaced by k
arcs not in current route to form a feasible but less costly route.

Or!! proposed a variation that attempts to exchange a string of one, two or
three adjacent nodes with another node within a currently feasible route. Ste-
wart!2 reported performance of Or’s heuristic.

For our problems with both time windows and time-varying congestion, the it-
eration steps of Or’s heuristic can be used as they are, with some form of
route feasibility check routine added. Here, feasibility condition 3 can serve
the purpose. However, since feasibility condition 3 is only a necessary condi-

tion, additional feasibility tests may be needed.

So far, we have discussed insertion, savings and arc exchange heuristics
that make use of feasibility condition 1, feasibility condition 2 and feasibi-
lity condition 3.However, it is noted that any other routeing algorithes can
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benefit equally from using the suggested conditions.

COMPUTATIONAL RESULTS

Computational experiments were carried out to illustrate the computational
performance of the feasibility conditions discussed in the preceding sections.
Sets of problems with 50, 75, 100 or 200 nodes were generated as test sampl-
es. As a time—dependent congestion function 7ij(-) for each node (i,j), we
assumed a horizontal line with a single peak as shown in Figure 1. This shape
was chosen since it is the simple but illustrative form of traffic congestion.

The peak times and congestion durations were randonly generated, and the

Travel time

h
AN

Peak Departure
time time

Fig. 1. A function of the direct time between two nodes, i.e.7Tij(-).

slopes of congestion functions were also randorly generated between O and 1 in

order to satisfy the non-passing property. During non=congested hours, travel

times are proportional to the internode distances. Internode distance data
_gl_
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were taken from Krolak et al!3. For 200-node problems, and from Eilon et all4,
for others. All the solution procedures were implemented in Turbo Pascal on
the Compaq Deskpro 386(16MHz).

First, we evaluated the effect of introducing feasibility condition 1 into

an insertion heuristic that employs the cheapest insertion criterion and Mole

and Jameson’s selection criterion. We ran the heuristic once with this tiee

feasibility condition and then without. Teble 1 summarizes the resulting CPU ‘

times, where the substantial reduction in run-times can be seen. Even the wor—

st cases produced with our feasibility check routine are better than the aver—
age run-times produced without it. Importantly, this phenomenon becomes more
pronounced as the problem size increases. It should also be noted that the )

run-time reduction is more pronounced with less—tight time windows or with

fewer time-windowed nodes.

TapLE 1. Performance of feasibility. condition I1(CPU time in seconds) ‘

Lo

_ No. of nodes with Using condition 1 Not using lhm-tiné‘ N
No. of time windows condition 1: reduction ‘-
nodes (%) Average Worst average %)

50 50 4.8 5.3 7.1 32.4
100 4.0 ) 4.2 4.0 0.0 ~
75 50 15.4 17.0 28.0 45.0
100 il.9 12.6 11.9 0.0
100 50 32.2 34.7 70.5 54,3
100 25.4 27.4 27.3 7.0
200 50 239.1 259.1 729.7 67.2
100 180.9 183.9 226.2 20.0
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TaBLE 2. Performance of feasibility condifion 3(CPU time in seconds)

No. of nodes with Using condition 3 Not using Run-time

No. of time windows condition 3: reduction
nodes (%) Average Worst average (%)
50 50 1.3 2.5 2.6 50.0
100 0.6 0.7 1.9 3.7

75 | 50 6.0 8.7 9.1 34.1
100 1.2 1.9 5.8 79.3

100 50 10.1 14.9 15.0 32.7
e 100 3.0 6.1 14.7 79.6
200 50 68.1 76.7  110.8 38.5
. 100 18.0 27.7 93.4 80.7

Likewise, we experimented on the effect of introducing feasibility condition
3 iﬁto;a_tour improvement heuristic, Or’s method. Again, the suggested feasib-
ilit;TESndition contributes much to relieving computational effort. Table 2
sho@s that, as with the case of feasibility condition 1, the run-time reducti-
on here becomes more pronounced with larger problems. The only difference is
that, "in this case, the run-time reduction is greater with tighter time windo-
ws or an increasing number of time—windowed nodes.

It .would be also interesting to see how our feasibility check routines could
help routeing problems with time windows only. For this class of problem. sev-
eral algorithms already exist,3:15 but few have employed the feasibility rout-
ines of our type. For this experiment, we ran the insertion heuristic of Table
1-one set with feasibility condition 1 and the other with Solomon’s feasibili-
ty condition.!5 The results are summarized in Table 3. Again, our feasibility
condition perform quite well in comparison with Solomon’s. In fact, the contr—
ibution of feasibility condition 1 is more appreciable here than in the time—

varying congestion case. As expected, the run-time reduction here is also gre-
ater for larger problems.
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TasLE 3. Comparison with feasibility condition I and Solomon’s conditions
(CPU time in seconds)

No. of nodes with Using condition 1 Using Run-time
No. of time windows Solomon’s reduction
nodes (%) Average Worst average (%)
50 50 2.0 2.2 3.8 47.4
100 1.5 1.6 2.1 28.86
75 50 6.1 6.9 15.0 59.3
100 4.4 4.8 6.6 33.3
100 50 13.0 14.4 37.9 85.7
100 9.6 10.1 15.1 36.4, N
200 50 98.6 106.8 386.8 4.5
100 68.4 68.9 125.2 45.4

From these results, though they are limited, we have found that the feasibi-
lity check routines suggested in this paper help a great deal in both tour
con- struction and tour improvement heuristics for time—windowed routeing
problems, whether they are subject to time-varying congestion or not. This is

particul- arly so with larger problenms,

CONCLUDING REMARKS

The vehicle-routeing problem with traffic congestion is an important and pr—

actical problem deserving serious research attention. This paper has explicit-
ly considered traffic congestion (the time-varying congestion) in the vehicle-
routeing problem with time windows.

The added complexity of time-varying congestion makes it time—consuming to
check the time feasibility of associated routes in most routeing heuristics.
To alleviate this situation, we have identified a simple, but convenient,
monotonicity property of the arrival time function which allows us to derive
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efficient time feasibility check routines for tour construction heuristics and

tour improvement heuristics. We have also modified three heuristic— the savin-

gs,

the insertion and Or methods—in order to solve the problem of our concern.

It is also noted that vehicle-routeing problems with time windows only triv-

ially satisfy the non-passing property and the suggested feasibility conditio—

ns are well applied; and further, that these conditions enhance the performan-

ce of existing heuristics.
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