Journal of Port and Harbor Research. RIPAH
Korea Maritime University. Vol. 7, pp. 87~92, 1996.

K. F. Cheung

Assistant Professor,

Department of Ocean Engineering,
University of Hawaii at Manoa,
2540 Dole Street, Holmes Hall 402,
Honolulu, HI 96822

Wave Diffraction Around Three-
Dimensional Bodies in a Current

The effects of a collinear current on the diffraction of regular waves around three-

M. Isaacson

dimensional surface-piercing bodies are examined. With the current speed assumed

Professor, to be small, the boundary-value problem is separated into a steady current problem

Department of Civil Engineering,
University of British Columbia,
Vancouver, B.C., Canada V6T 124

with a rigid wall condition applied at the still water level and a linear wave propaga-
tion problem in the resulting current field. The boundary conditions of the wave
propagation problem are satisfied by a time-stepping procedure and the field solution
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1 Introduction

Accurate predictions of wave effects on large structures in
combined waves and currents are. of practical importance in the
design and operation of these structures in the natural environ-
ment. By considering a reference frame fixed to the current,
this problem is equivalent to the drift motions or maneuvers of
a large offshore structure or ship in waves. If the current speed
or the forward speed of a drifting structure is small, the effects
of flow separation are generally unimportant and the problem
can be described adequately by potential theory.

Restricting the applications to fully submerged bodies, the
flow field can be separated into a steady wave component asso-
ciated with the current and a propagating component associated
with the radiated and diffracted waves (e.g., Grue and Palm,
1985; Wu and Eatock Taylor, 1987; and Wu, 1991). If the
current speed is small, the steady wave system generated in the
vicinity of the body is insignificant. The free surface boundary
conditions for the steady current problem can be reduced to a
rigid-wall condition, and the method can be applied more gener-
ally to surface-piercing bodies. Based on the condition of infi-
nitely deep water, Zhao and Faltinsen (1988) and Wu and Ea-
tock Taylor (1990) provided numerical solutions for two-di-
mensional surface-piercing bodies, and Nossen et al. (1991)
applied the method in three dimensions. Grue and Biberg
(1993) generalized the method for finite water depth applica-
tions. Other applications were made by Grue and Palm (1993)
to calculate the wave-drift damping coefficients and by Ertekin
et al. (1994) to study the interaction of waves with a steady
intake-pipe flow.

All of the aforementioned solutions for the wave-current in-
teraction problem have been developed in the frequency do-
main. Isaacson and Cheung (1993) provided a time-domain
solution for wave diffraction and radiation in the presence of a
current. Their treatment of the free surface boundary conditions
is based on a slow current, but does not require the assumption
of infinitely deep water. The numerical procedure has been
found to be stable and robust. The present paper considers an

extension of their method to three dimensions. Applications of '

the method are made to the diffraction of regular waves around a
surface-piercing circular cylinder and a semi-immersed sphere.
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forces are described for a vertical circular cylinder in combined waves and a current.
The current is shown 1o affect significantly the steady drift force and runup predic-
tions. Comparisons of the computed wave forces are made with a previous numerical
solution involving a semi-immersed sphere in deep water, and indicate good agree-

2 Theoretical Formulation

With reference to Fig. 1, the boundary-value problem is de-
fined with a right-handed Cartesian coordinate system (x, y,
2), in which x and y are measured horizontally and z is measured
vertically upward from the still water surface S,. The body
located at the center of the domain is rigid and fixed, and its
surface below the still water level is indicated by S,. The seabed
is assumed impermeable and horizontal in the plane z = ~d.
The infinite domain is truncated by a vertical control surface S,
located at a sufficiently far distance from the body. The incident
waves and the uniform current are collinear in the x-z plane.

The fluid is assumed to be incompressible and inviscid, and
the flow irrotational. The flow field is described by a velocity
potential ¢ satisfying the Laplace equation

Vi =0 (1)

Since a linear solution is sought, the potential can be expressed
as a sum of individual components proportional to the current
speed and wave height, respectively,

i ¢ =d+ b+ b+ &, (2)
in which
¢, = Ux (3)

represents the potential of the uniform current, and U is the
current speed. The potential ¢, is the steady disturbance to the
uniform current by the body; and ¢.. and ¢, indicate, respec-
tively, the incident and scattered wave potentials.

Since the current speed is assumed to be small, the steady
component of the free surface elevation is negligible. The free
surface elevation is therefore expressed as a sum of the incident
and scattered wave components as

n="T+ N (4)

In the presence of a uniform current, linear wave theory gives
the incident potential and free surface elevation, respectively,
as

_ 2_77ﬁ cosh [k(z + d)]
kT sinh (kd)

N = A cos (kx — wd) (6)

b, sin (kx — wr) (5)

in which w, = w + kU is the angular frequency of the incident
waves relative to a fixed reference frame and ¢ denotes time. In



Fig. 1 Definition sketch of mathematical model

Egs. (5) and (6), A is the incident wave amplitude, T is the
wave period relative to the uniform current, k is the wave num-
ber of the incident waves, and w = 27 /T is the angular fre-
quency relative to the uniform current.

With the uniform current and incident wave potentials speci-
fied, separate boundary-value problems for ¢, and ¢, may be
developed by a perturbation expansion using small parameters
o and ¢, relating to the current speed and wave hcxght respec-
tively, (Isaacson and Cheung, 1993).

2.1 Steady Current Problem. The boundary-value prob-
‘lem for ¢, describing the modification of the uniform current
by the body can be obtained by collecting terms to order €°,
and retaining terms to order o. The boundary conditions applied
on the seabed and body surface are, respectively, given by

% =0 at z=-d @)
% _ _ 06 _
on = on Un, on S, (8)

where n is distance in the direction of the unit normal vector n
= (n,, n,, n,) directed outward from the fluid region. Since the
current speed is small and second-order terms in o are ignored,
the kinematic free surface boundary condition is reduced to a
rigid-wall condition

%,
(724

The dynamic free surface boundary condition shows that the
corresponding free surface elevation is second order in o, and
is not considered. Since the disturbance caused by the body is
localized, it is required that the effects of ¢, vanish at large
distance from the body. For bodies of simple geometry, a
closed-form solution can be obtained by a number of standard
methods, including mapping techniques. For bodies of arbitrary
shape, a numerical solution may be obtained by an integral
equation method.

2.2 Wave Propagation Problem. The boundary-value
problem for the scattered potential ¢, may be established by
collecting terms of order e and retaining terms of up to order
o. The boundary conditions on the seabed and body surface are
given, respectively, by

=0 on &, 9

6¢, =0 at z=-d (10)
%--%
o on on S, (1)

Due to the presence of the current, the linear kinematic and
dynamic free surface boundary conditions are modified, respec-
tively, to

%_%_U%=(%+3_ﬂz>%
Oz ot ox Ox ox ) Ox
+<‘2’;" ‘g’)%‘:”-(, )‘?;;” on S, (12)
L 9, _ _ (9¢n , 3¢\ 9%,
B tEmr UG = <6x 6x>6x
—(‘Z‘;" %y’”)% on S, (13)

where g is the acceleration due to gravity. It should be noted
that both the incident and scattered waves are modified by the
local current field near the body as accounted for by the right-
hand sides of Eqgs. (12) and (13).

Due to the steady disturbance to the uniform current, the
dispersion relation in the vicinity of the body is quite compli-
cated. Far away from the body, the effects of ¢, vanish, and
the celerity of the scattered waves varies with the azimuthal
angle, depending on the angle between the scattered wave prop-
agation and the current direction. The radiation condition is
extended to account for the spatially dependent celerity

%, , 2,

> a—OonS

(14)

where c is a locally determined celerity of the outgoing waves
on the control surface.

This radiation condition was originally developed for two-
dimensional hyperbolic flows (Orlanski, 1976). It has been
applied to the second-order and full nonlinear wave diffraction
problems in three dimensions (e.g., Isaacson and Cheung, 1992;
and Yang and Ertekin, 1992), and to wave-current interaction
problems in two dimensions (Isaacson and Cheung, 1993). In
these studies, the radiation condition has been shown to be
effective in reducing reflection from the control surface, and
thereby minimizes the effects of the artificial boundary on the
numerical solutions.

2.3 Integral Equation. The solution to the boundary-
value problem of the scattered potential may be obtained by the
application of an integral equation involving a Green function G

$x) = o f [G(x )a¢, ¢,<x)g—f<x,§)]ds a5s)

where £ represents a point on the surface S over which the
integration is performed, and n is measured from £. The surface
S would comprise of the body surface, the still water surface,
the seabed, and a control surface. With the seabed horizontal
and the flow symmetric about the x-axis, it is more efficient to
exclude the seabed from S and to choose a Green function that
accounts for the double symmetry about the x-axis and the
seabed. This is

4

1
G(x,8) =20 5 (16)
(x.§ E 1& — x|
where &, are the source points in the four quadrants of the
doubly symmetric configuration (see Isaacson and Cheung,
1992).



2.4 Summary of Numerical Procedure. The numerical
procedure described in Isaacson and Cheung (1992. 1993) can
be applied directly to the foregoing formulation. and only a
brief summary is provided here. The integral equation. Eq. (15),
is solved by a numerical procedure in which the boundaries S,,
S..and S, are discretized into finite numbers of planar quadrilat-
eral facets. The corresponding values of ¢, and d¢,/On are
taken as constant over each facet and applied at the centroid.
Equation (15) is then reduced to a system of simultaneous
equations. Since the coefficients of the simultaneous equations
are functions of geometry and discretization only, the solution
to the system of equations is required only once and the numeri-
cal model can be applied to different incident wave and current
conditions.

The input vector to the system of equations consists of the
normal derivative of the scattered potential on the body surface,
which is known from the body surface boundary condition, as
well as the potential on the control surface and the still water
surface, which may be obtained by a time-stepping procedure
applied to the corresponding boundary conditions. Initial condi-
tions at ¢ = 0 correspond to an undisturbed regular wave train
riding on a uniform current in the computational domain and
the body has no effects on the flow. The body surface boundary
conditions (Eqs. (8) and (11)) are imposed gradually through
the use of a modulation function and a steady-state solution in
the vicinity of the body is developed after the first wave cycle.

2.5 Hydrodynamic Forces.. With the current and wave
potentials evaluated, the pressure in the fluid may be determined
by the Bernoulli equation. The wave forces on the body can be
determined by carrying out an integration of the pressure over
the instantaneous wetted body surface. However, the pressure
integration can be expanded about the still water level to give
an integral over the body surface below the still water level S,
and an integral defined at the still waterline contour w,. Collect-
ing terms of order e, the first-order oscillatory force is given by

_ [ [(22. , 0.
F = PJ;[( o + a,)+v(¢u+¢b)

X V(dw + ¢>,)]n’d5 (17)

in which n’ = (n,, n,, n., yn. — zn,, zn, — xn., xn, — yn,),
and p is the water density. The force vector F = (F,, F,, F,,
M., M,, M.) represents the three components of wave forces
and moments in the three translational and rotational directions,
respectively. It should be noted that the second term of Eq.
(17) derives from the velocity-squared term in the Bernoulli
equation.

By collecting terms of order €2, the second-order steady force
can be obtained from the solution of the first-order boundary
value problem as

F=- %p <J‘ V(. + ¢,)Izn’d5>

1 N
+ 38 <f (N + n,)'n’dW> (18)

where () denotes a time average and w indicates distance along

the still waterline contour. The second integral in Eq. (18)
accounts for the steady wave force due to the fluctuation of the

free surface around the body.

3 Results and Discussion
To illustrate the numerical model and to compare with a

preyious theoretical.solution, %ﬂtiﬁ F]made to a bottom-
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Fig. 2 Views of free surface profile around a circular c@der for ka =
1and d/a = 1; (a) U/Nga = 0, (b) U/Nga = —0.1, (c) U/Vga = 0.1

mounted, surface-piercing circular cylinder in finite water depth
and a semi-immersed sphere in infinitely deep water. For these
configurations, the closed-form solutions for the potential ¢,
describing the steady disturbance to the uniform current by the
bodies are known and are utilized in the numerical solution.
The current speed is expressed in dimensionless form as the
Froude number U/V ga, where a denotes the radius of the cylin-
der or the sphere. Since collinear waves and currents are consid-
ered, a negative value of the Froude number indicates a current
in the negative x direction.

3.1 Free Surface Profiles. Let 6 denote the azimuthal
angle measured horizontally from the positive x-axis. The free
surface profiles around a circular cylinder at the instants when
the free surface elevation is maximum at /7 = 1 are shown
in Fig. 2 for different values of the Froude number. The wave
‘conditions correspond to ka = 1 and d/a = 1, and the incident
waves propagate from left to right in the figures. Comparing to
the case when U/\/; = 0 in Fig. 2(a), it is observed that the
wave field in Fig. 2(b) is scattered to a lesser extent when the
incident waves propagate in the opposite direction of the uni-
form current. In Fig. 2(c), the incident waves propagate in the
same direction of the current and the scattered waves are more
visible and their amplitudes are higher.

The propagation of the waves is modified more significantly
by the current. Despite identical incident wavelengths in each
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Fig.3 Runup as a function of azimuthal angle around a circular cylinder
for ka = 1and d/a = 4; —, U/Nga = 0; - --- - ,Ulga = -0.1; - - -,

U/lga = 0.1

of Figs. 2(a) to (c), the encounter frequency is different in
each case owing to the presence of the current. On the surface
of the cylinder, the current speed ranges from zero to 2U, and
both the incident and scattered wave fields are modified. Far
away from the cylinder, the steady flow field approaches that
of a uniform current. The scattered waves in the direction of
the uniform current would have longer lengths and lower
heights, and propagate at higher speeds. On the other hand, the
scattered waves which propagate in the opposite direction of
the current would have shorter lengths, higher heights, and
lower speeds.

3.2 Runup. The runup around a circular cylinder for the
conditions of ka = 1 and d/a = 1 is plotted in Fig. 3 as a
function of the azimuthal angle. The solution corresponding to
U/Vga = 0 is also shown in the figure to provide a reference
for comparison. The runup is normalized with respect to the
incident wave amplitude. Although the effects of the current on
the runup vary depending on the azimuthal angle, the range of
runup along the cylinder perimeter increases with the Froude
number. When U/‘/g—a = —0.1, the amplitudes of the scattered
waves decrease at the front of the cylinder and the location of
the maximum runup shifts from the front to the side. Figure 4
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Fig. 4 Runup on a circular cylinder at /7 = 1 as a function of ka for
d/a = 1.(see caption of Fig..3 for legend)
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shows the runup on a circular cylinder at §/m = 1 as a function
of ka for d/a = 1. Due to increase in the scattered wave ampli-
tude, the runup at §/7 = 1 always increases with the Froude
number.

For negative values of the Froude number, the maximum
runup and its location on a circular cylinder are plotted, respec-
tively, in Figs. 5(a) and (b) as functions of ka for d/a = 1.
The runup when U/Vga = 0 is also shown for comparison. It
is noted from Fig. 5(a) that the maximum runup around a
circular cylinder does not necessarily decrease with a current
in the opposite direction of the incident waves. In Fig. 5(b),
the location of the maximum runup shifts from the front to the
side of the cylinder for most of the wave and current conditions
considered. While the variation of the maximum runup with ka
is gradual and continuous, the location of the maximum shifts
abruptly when U/\/; = —0.05 and ka =~ 0.35. Under these
conditions, the runup on the upwave side of the cylinder is
nearly uniform.

For the ranges of parameters considered, the runup and its
variation along the cylinder perimeter exhibit nonlinear relations
with U.

3.3 First-Order Oscillatory Forces. The amplitudes of
the first-order oscillatory force and moment on a circular cylin-
der for different values of the Froude number are plotted as



4 T T T 20 T T
/"'——__ “‘\\\
g x—”"'x_ """" n_;\‘-
15} =
<
“©
=)
L10f 4
w
os} p/ i
A
[ . . . 00 . A
0.0 05 - 10 15 20 0.0 05 10 15
ka ka
(a) Force (a) x component

0.0 . L L 05 ! |
0.0 0s 1.0 15 20 co - 0s 10 15
ka ka
(b) Moment (b) z component

Fig. 8 Amplitudes of the first-order oscillatory force and momentona  Fig.7 Amplitude of the first-order oscillatory force on a semi-immersed

circular cylinder as functions of ka for d/a = 1 (see caption of Fig. 3 for  sphere as a function of ka in deep water. Present study: —, U/Vga =

legend) 0----- , UlNga = —0.04; - - -, U/Vga = 0.04. Nossen et al. (1991): O,
UlNga = 0; x, UlNga = —0.04; +, U/Vga = 0.04.

functions of ka in Figs. 6a and (b), respectively. It is noted that
the amplitudes of the first-order oscillatory force and moment do
not necessarily increase with the Froude number. In particular,
the presence of a current in the direction of wave propagation
decreases the force and moment predictions near ka = 1. In 15 T T T
general, the effects of the current on the force and moment
amplitudes are found to be nonlinear and are more significant
for large values of ka.

To verify the present model, Figs. 7(a) and (b) show the
comparisons between the computed amplitudes of the first-order 10
oscillatory forces in the x and z directions with those of Nossen
et al. (1991) for a semi-immersed sphere in infinitely deep
water. The numerical solution of Nossen et al. was calculated
using 200 facets on one-half of the body surface. To maintain
a consistent resolution of the grid in terms of the wavelength, . os}h
250 to 490 facets were used in the calculation of the present
results. The comparisons indicate good agreement. Based on an
inspection of the numerical solution, the computed wave force
amplitudes in both directions are generally found to be linear
functions of the current speed.

i
3.4 Second-Order Steady Drift Forces. The second-or- .
der steady drift force on a circular cylinder, which is calculated ! ka
on the basis of the first-order solution, is plotted as a function Fig. 8 Second-order dritt force on a circulsr cylinder as a function of

of jka*for dfa.=_1jin Fig. 8. It @teﬁﬁrlje ranges of  kaifor d/a = 1 (see caption of Fig. 3 for legend)

2

F/ogaA

0.0 . d L
0.0 05 1.0 15 20




08 .

2

F/pgaA

15

Fig. 9 Second-order drift force on a semi-immersed sphere as a func-
tion of ka in deep water (see caption of Fig. 7 for legend)

frequency and current speed considered, the second-order
steady force varies nonlinearly with U. For the case of a semi-
immersed sphere in deep water, the comparison between the
computed second-order drift force and that of Nossen et al.
(1991) is shown in Fig. 9. The present model gives slightly
higher predictions compared to Nossen et al.’s numerical solu-
tion. Itis expected that the discrepancy between the two numeri-

. cal solutions is primarily due to the use of different number of
facets to model the body, as discussed in Section 3.3.

For both bodies, the effects of the current on the second-order
steady drift force are found to be more pronounced compared to
the first-order forces, and the magnitude of the steady drift force
always increases with the Froude number. This is primarily due
to the effects of the current on the water surface elevation
around the body, which in turn modifies the steady drift force
prediction. As a result, the predicted low-frequency response
of a floating structure would be modified significantly if forward
speed effects are included in the computation of the drift force
or the wave drift damping coefficient.

4 Conclusion

A time-domain method has been developed to treat the inter-
actions between regular waves and a collinear current with large
surface-piercing bodies of arbitrary shape in three dimensions.
The present approach has been applied to wave diffraction for
a bottom-mounted surface-piercing circular cylinder in finite
water depth. The free surface profiles, runup, first-order oscilla-

@ hhu

tory and second-order steady forces are examined. The present
numerical model is verified by comparing the computed forces
with previous numerical results involving a semi-immersed
sphere in deep water.

The results illustrate the importance of current or forward
speed effects on a large offshore structure in waves and also
the linear and nonlinear effects of the current on the solution.
The numerical solution for the vertical cylinder is found to be
a nonlinear function of the Froude number, while the solution
for the semi-immersed sphere in deep water is shown to be a
linear function of the Froude number. For the range of parame-
ters considered, the presence of a current has been found to
have significant effects on the runup and second-order steady
force, whereas the first-order forces are affected to a lesser
extent.
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