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ABSTRACT : In this paper, we introduce some model selection criteria and find their characters by reviewing the old
papers. And we find the some model selection criteria of candidate models after we restrict the range of SSE in
regression. We check the effect of extra variables using two models. In both models,
n=25000, Y=1+z+¢, where = ~ N(0,1) and e ~ N(0,1). /n model 1, there are two extra variables included and

in model 2, there are five extra variables included in the study.
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1. Introduction of SSE. Also find the average Kullback-Leibler
efficiency and the average L,
Selecting the best model in multiple regression has We first define the true regression model to be
become a popular subject in recent years. Usually, we Y= X.53: + e e« ~ N(0, o* 1)

£ k impl ;o
prefer to take simple model, but there are also s ® /- (yl, y2)“‘}yn) is an n X1 vector of

important variables in the data. We should balance the
simplicity and performance to find the best regression responses, X:f. is an n X1 vector of true unknown
model. There are several steps to balance these two functions, and €. = (€+, €+, ...,€+,). We assume
properties. First, check the relationship between that the errors e; are independent and identically
variables and then select a good model from the set of
candidate models. The model selection criterion is one normally distributed, with constant variance o% for
of methods for selecting the best model. In this paper, 1=1,2,...,n.

we introduce some model selection criteria and find We next define the general model to be
their characters by reviewing the old papers. And we Y= XB+¢ € ~ N(O, o? [)
find the some model selection criteria of candidate , . .

models after we restrict the range of regression models where X'= (21,2, ...,2,) is a known n Xk design
using SSE. SSE (Sum of Squared Error) is important matrix of rank k, & is a kX1 vector. B is a kX1
thing to select the best model. But if we do not know vector of unknown parameters, and
the exact distribution of SSE, it is a little difficult to

use SSE in model selection. We will control this

’
€ =(€,,€5,...,€,). We assume that the errors €; are

independent and identically normally distributed with
difficulty at the further research. In this paper, we

use the SSE when reduced model is nested and X is
orthogonal matrix. In chapter 4, we calculate and
compare the AIC, AICe,Cp and HQ after restriction first column of X will contain a column of 1's

the constant variance ¢@ for ¢ =1,2,...,n. If the

constant, or y-intercept, is included in the model, the
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associated with constant.

Finally we will define the candidate model, with
respect to the general model. In order to classify
candidate model types we will partition X and 3 such

that X = (Xp, X}, X;) and B=(8y,B/,5,), where
Xo, X and N Xk,
matrices, and By, 3, and By are kg X 1,k; X1 and
k<1

combination  of
p+ = Xuf, then

and Xp are nXky,nXk

vectors, respectively. If [+ is a linear

unknown parameters such that

underfitting will occur when
rank(X) < rank(X.), and overfitting will occur
when rank(X.) < rank(X). Thus we can rewrite

the general model in the following form :

Y= Xof+ X0 + Xz, + €
= Xaf + X500, + €,
where B+ = (By,8; ), Xo is the design matrix for an
underfitted candidate model, Xi = (Xp,X;) is the

model and
the design matrix for an

design matrix for the true
X=(Xp, X, X) is
overfitted model. Thus an underfitted model is written
as Y= X,0,+¢€ and an overfitted model is written

as Y=X0y+ X0+ X0, +¢€.

There are two categories of model selection criteria.
The goal is to select one model that best approximates
the true model from a set of finite-dimensional
candidate models. The candidate model that is closest
to the true model is assumed to be the appropriate
choice. Here, the term “closest” requires some
well-defined distance or information measure in order
to be evaluates. In large samples, model selection
criteria that choose the model with minimum mean
squared error distribution is said to be asymptotically
efficient [11]. AIC, AICc,and Cp are asymptotically

efficient criteria. We assume that the true model is of
finite dimension, and that it is included in the set of
candidate models. Under the this assumption the goal
of model selection is to correctly choose the true model
from the list of candidate models. A model selection
criterion that identifies the correct model asymptotically

with probability one is said to be consistent. STC and

H() are consistent model selection criteria.

2. Historical Background of Literature

Much of past model selection research has been

concemed with univariate or multiple regression

models. Perhaps the first model selection criterion to
be widely used is the adjusted R-squared, R(f,j, which

still appears in many regression texts today. It is
known that R? always increases whenever a variable

is added to the model, and therefore it will always
recommend additional complexity without regard to

relative contribution to model fit. 1{:‘:1]» attempts to

correct for this always-increasing property. Other
model selection work appeared in the late 60’s and
early 70's, most notably Akaike’s FPE and Mallow’s
Cp [11[8]. The latter is currently one of the most
commonly used model selection criteria for regression.
Information theory approaches also appeared in th
el970’s, which the landmark Akaike Information
Criterion, based on the Kullback-Leibler discrepancy
[2][3]). In the late 1970’s there was an explosion of
work in the information theory area, when the
Bayesian Information Criterion (BIC), the Schwarz
Information criterion (SIC), the Hannan and Quinn
Criterion (HQ) [3][4}{10]. Subsequently, in the late
1980’s, Hurvich and Tsai adopted Sugiura’s 1978
results to develope an improved small-sample unbiased
estimator of the Kullback-Leibler discrepancy, AICc
[8]. In 1980 the notion of asymptotic efficiency
appeared in the literature as a paradigm for selecting
the most appropriate model, and SIC, HQ became
associated with the notion of consistency [9][11]. The
model selection test, or say sequential F-test, is
another model selection method. This method is applied
by adding or deleting independent variables from the
candidate model based on the F-test.

First of all, let’s check the equations and characters
of model selection criteria. Now, we review some
common efficient criteria. Akaike showed that AIC is
unbiased for the Kullback-Leibler
information up to a constant [1][7].

The distance measures Lo and Kullback-Leibler

asymptotically

discrepancy (K — L) provide a way to evaluate how
well the candidate model approximates the true model

by estimating the difference between the expectation of
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the vector Y under the true model and the candidate
model. The L, distance

candidate model and the expectation of the true model

X*B.—»Xﬁlr. Under the

between the estimated

can be defined as L2=%|

assumptions of normality, we define (KA — L) as

K- L= %B[Iog ("ffﬂ where f« and B+ denote

the density and the expectation under the true model
and f is the density function of the candidate mode
[12]L

Now we show that

AIC=nlog(c?)+2(k+1)+nlog(2m)+n and

the last two terms are not important for model
selection, so we can ignore them. Simplifying and
scaling by n, we get

AIC=log(52) +2{k+1)
n

The model which minimizes AIC is considered to be
closest to the true model. However, AIC tends to be
overfitted in small samples [5]. Hurvich and Tsai
attained the bias-corrected, in terms of selected order,
version of AIC. Hurvich and Tsai modified AIC to
provide an exactly unbiased estimator for the expected
K-L information, assuming that the errors have a
normal [5].

AICc =log(c?) + ntk

n—k—2

AIC and AICc are the methods related to K-L
discrepancy [7]. The K-L discrepancy measures the
distance of the density function of the true model and
that of the candidate model. The minimum value of the
AIC and AICc is said to be close to the true model
When the sample size is large, AIC and AICc behave
the same. But, AIC has problems when the sample
size is small so AICc is better than AIC. AIC, AICc
and Cp are efficient model selection criteria [6].

SIC(BIC) can be overfitted in small samples due to
the linear (in k) penalty function. The equation of SIC
is

SIC=log(62) + 12 \n k

HQ@ is a strongly consistent estimation procedure
based on the law of the iterated logarithm. The

equation of HQ is
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HQ=log(c}i)+ 2logl<;g§n)k

BIC and HQ are related to asymptotic performance
properties. In small samples, say 25 observations or
less, BIC tends to over fit the model. In large samples,
BIC correctly identifies the true model. Such criteria
are referred to us asymptotically consistent. If true
model belongs to the set of candidate models and is of
finite order, then a model selection that identifies the
true model asymptotically with probability one is said
to be consistent [11]. HQ is also a consistent criterion.

L ) 2 )
In Mallow’s derivation, the estimate Sg (k=K in

SSE,
si =-—"%) from the largest candidate model was

substituted as a potentially unbiased estimate of g to

yield the well-known Mallows’s Cp model selection

S5,

Sk

—n+2k.

criterion Op =

The model selection test, or say sequential F-test, is
another model selection method. It works well in
practice but can’t look at all possible subsets. So, it
tends to have an underfitting problem. Terasvirta and
Mellin compared the model selection and sequential
F-test when all models are linear and one model is to
be chosen from a set of nested alternative using
Monte Carlo experiment [13]. They said that model
be well in

selection tests seem to simulation

experiments.
3. Model Selection Criteria after Using SSE

Finding the "best” model with k variables is a little

difficult, since there are 2 k possible models to check.
We can compare SSE and number of parameters, k, of
each subsets and then apply the model selection
criteria to the list of kK model. For the given parameter
count k, the best model has the smallest SSE. In all

subsets regression, the 2 * models reduce to a list of
K models, the best for each parameter count,
k=123,.,K. We need the distribution of SSE for
comparing these models. To do that, develop the
bootstrapping for all subsets regression, and then
compare SSE for order k. Now, we check the one
variable model, and find the best 1 variable model that
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have the smallest SSE among the each 1 variable
model. There should be k models to check the SSE.

Find the best 2 variable model and there are ,C,

models to check the SSE. We can keep going until the
candidate model has k variables. Then, make the plot
between SSE and best k models. Theoretically, this
plot could be straight line, but in practice, the plot
looks like curve. The SSE rapidly drops in some
points and very slowly dropped in other points.
Another possibility is to restrict range for existing of
model selection criteria. This may prevent overfitting.
We restrict the range of the subsets using plot.
Bootstrap the distribution of the drop in SSE between

SSE; and SSE, ., ;.

Now, let's talk about model selection using SSE of
orthogonal case. Suppose the reduced model has m
orthogonal remaining variables. And there are m
nested full models each with 1 additional variable over
the reduced model. The m full model could be

X, X,, X4, ...,X,. The SSE , is the total
SS and SSE ,— SSE 5, SSE ,—SSE ,, ....,

SSE ,— SSE 4, follow the 0 2x? distribution and
they are independent each other. The proof of

independence is below.

Theorem

SSE ,—~SSE ; and SSE ,— SSE ,

are independent when X is orthogonal and none of the

new variables are shared.
proof) SSE r— SSE ,=Y[H ,—H,]Y
SSE —SSE ,=Y[H ,—H,]1Y
(Hj — H,)(H,— H,) =0
(By Fisher-Cochran Theorem)

So, we can say that all these chi-square distribution
are independent since variables are orthogonal. The
best full model is the model with largest chi-squared
distribution with degree of freedom 1. Find the
minimum of SSE. Since SSE of full model equals the
SSE reduced model minus chi-square distribution, so
finding the minimum of m independent chi-square
distribution is the same as finding the minimum of
SSE. We checked

maximum of chi-square distribution when m is 50. We

relationship between m and

checked that the expected drop in SSE increases as m
increases. When parameters increase over 26, the
expected drop in SSE is increased very slowly. So, we
can restrict the range of the subsets of parameters
based on the drop. It means that we can reduce the
selection of subsets of all regression models. And then
we can apply the model selection criteria using these
selected subsets.

We check the effect of extra variables using two
models. In both models,
n = 25,000, Y=14+ X+¢, where z ~ N(0,1),
and € ~ N (0,1). In model 1, there are two extra
variables included in the study. In model 2, there are
five extra variables included in the study. This
example illustrates the impact of extra variables on
selecting the true model. "K' — L ave” and "L, ave”
denote the average Kullback-Leibler efficiency and the
average L, efficiency, respectively, over 1,000
realizations. This chapter include theoretical properties

of model selection criteria and the K — L and L,
distance. Here we use the expected values of Lo and
K — L when discussing theoretical distance between
the candidate model and true model. For In, we
defined L» expected efficiency as

L, expected efficiency = %

where FEjp [L,(AL)] is the expected L, distance of
the closest model and FEj [L,(M,)] is the expected

L, distance of the candidate model. Analogously,

K — L expected efficiency is defined as
Ep [K— L(M,)]
Ep |[K— L(M,)]

where Ep [K— L(M,)] is the expected K—L
distance of the closest model and Ey [K— L(M,)] is

K— L expected efficiency =

the expected K — L distance of the candidate model.
In the model 1, the model which has two variables
is the best model and we added two more extra
variables. Every model selection criteria chooses two
variable model as the best model. The average

Kullback-Leibler efficiency and average L o efficiency

is close 1. It means that every criteria did well to find
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the best model. In the model 2, also the two variable
model is the best model and we added four extra
variables. According to the above tables, the extra
variables effect to choosing the more variables. That
means it tends to overfitting if there are more extra

variables in regression.

Model 1. Two Extra Variables Included in the True
Model

k | AICc [ alcc| ¢ | HQ | sIc
1 0 0 0 0 0
2 691 691 691 924 994
3 268 268 268 74 6
4 41 41 41 2 0

true 692 691 691 924 994

K-L ave| 0.815 0.815 0.815 0.947 0.995

L, ave| 0785 | 0785 | 0785 | 0940 | 099

Model 2. : Five Extra Variables Included in the True
Model

k | Alc [alcc] ¢ | HQ [ sic
1 0 0 0 0 0
2 457 457 451 861 997
3 387 38 388 132 3
4 129 128 128 7 0
5 23 23 23 0 0
6 4 4 4 0 0
7 0 0 0 0 0
true | 454 | 454 | 454 | 88 | 994
K-L ave| 0659 | 0659 | 0659 | 0904 | 0.997
L, ave| 0611 | 0611 | 0611 | 0893 | 0997

4_ Conclusions and Further Research

We reviewed some model selection criteria and
compared these criteria when there are extra variables.
If there are lots of variables in regression model, it's
difficult to check the model selection criteria of every
subset models. Before checking the all models, we had
better to reduce the number of subset models using
SSE. However, if m variables are orthogonal, SSE is
followed the chi-square distribution. So, we can make
compare SSE of every subsets using plot of chi-square
distribution versus number of parameters.

However, if some new variables are shared in the
full model, SSE is not independent. And if the m
variables are not orthogonal, the distribution of SSE is
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so complicated we need to use bootstrapping. In the
nested model, the distribution of SSE is known. In the
non-nested model, distribution of SSE is unknown. In
each case, need to develop the bootstrapping for all
subsets regression.

In the next research, we will use the parametric

bootstrapping method. First we assume a distribution

N(0,02) since we do not know the exact
distribution of SSE. Then generate the residual and do
SSE, — SSE;

SSE} is

and numerator and

the regression. In the basic F-test,

followed by F distribution
denominator are independent when these are followed
the chi-squared distribution. In our research, we do not
know th exact distribution of SSE and to develop the
bootstrapping, we need to define the target function.
Our proposed target function is :
o1 (555 S5E)
n—k; = SSE;/(n—k;)

where K is the number of parameters in full

model and n is the number of data. The target

function is not exact F distribution since numerator
and denominator are unknown distribution and nor
independent each other. We need to show that this

target function does not depend on ¢’ in nested and

non-nested models.
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