Journal of the Research Institute of Basic Sciences, Korea Maritime University, Vol. 2, 1992.

Regularity for solutions of Transmission Problems for Elliptic Equations with Internal Polygonal Boundary

Sang-ho Kum*
Jin-Keun Seo**

* Dept. of Applied Mathematics, Korea Maritime Univ., Pusan, Korea

** Dept. of Mathematics, Seoul Nathional Univ., Seoul, Korea

1. INTRODUCTION

Let D be a bounded in $R^n(n\geq 2)$ and let $D\subset B_{1/2}$ where B_r is the ball at the center 0 with the radius r. Denote $B_1=B$. Consider a weak-solution $u\in \mathbb{V}^{1\cdot 2}(B)$, the space of square integrable function with distributional derivatives in $L^2(B)$, of the discontinuous elliptic equation:

(0.1)
$$\sum_{i,j=1}^{n} \frac{\delta u}{\delta x_{i}} = 0 \text{ in } B$$

where

 $[a_{ij}(x) = a_{ij}^1 XD + a_{ij}^2 XR^n \forall D$

 $\lfloor (a^1_{ij}) \rfloor$ and (a^2_{ij}) are positive definite symmetric constant matrices.

We are interested in establishing a regularity estimates

(1.2)

$$\int_{\partial D} |(\nabla u \pm)^*|^2 d\sigma < \infty$$

where

 $(g^+)^*(Q) = \sup\{|g(X)|: |X-Q| \le (1+\alpha) \text{ dist}(X,\partial D), X \in D\}$

and

 $(g^-)^*(Q) = \sup\{|g(X)|: |X-Q| \le (1+\alpha) \operatorname{dist}(X,\partial D), X \in B_{3/4} \setminus D\}$

In [L,R,U] and [R,S,U], where aD is locally the graph of a function in he class $\mathbf{W}^{\mathbf{p} \cdot \mathbf{n}}$ and \mathbf{p}) \mathbf{n} the gradient of \mathbf{u} is Holder continous up to the boundary on the both sides of \mathbf{D} .

But their method does not work for non smooth domain D.

Escauriaza, Fabes and Verchota [E,F,V] established (1.2) for any bounded Lipschitz domains with a connected boundary when $(a^1 i j) = I$ and $(aij)^2 = kI$. Here I denote the indenitity matrix.

Escauriaza and Seo [E,S] have established (1.2) for any bounded Lipschitz domain provided (a^1ij-a^2ij) is positive or negative semidefinite matrix. They also established a similar results for solutions to transmission problems for a elasticity and parabolic equations. But the method they used to obtain (1.2) does not work in all the situations.

We are now interested in removing the semi-postiveness restrictions to the difference of coefficient matrices($a^1_{ij}-a^2_{ij}$)[E,S]. In this paper, we get a partial result in R^2 under some severe geometric restriction.

Throughout this section we assume that the internal domain D satisfies

$$(1.3) D \cap B_{3r0} = \{(r, \theta): 0 \le r < 3r_0, -\theta_0 < \theta < \theta_0\}$$

so that aD n B3ro consists of line segments

$$l_1 = \{(r, \theta_0): 0 \le r < r_0\}$$
 and $l_2 = \{(r, -\theta_0): 0 \le r < r_0\}.$

THEOREM 1. If u is a week-solution of the transmission problem:

(1.4)
$$\frac{\partial}{\partial x_i} \left(((a-1)XD+1) \frac{\partial}{\partial x_i} (x, y) \right) + \frac{\partial}{\partial x_i} \left(((a-1)XD+1) \frac{\partial}{\partial x_i} (x, y) \right) = 0$$

in B_{2ro} , for any a > 0 and d > 0 then we have the estimate

$$(1.5) \qquad \int (11 \cup 12) \quad |(\nabla \cup \pm)^*|^2 d\sigma < \infty$$

Since $D \cap B_{2r0}$ is symmetric with respect to x-axis, we may use the following useful properties:

SYMMETRY PROPERTIES. If u is a weak-solution of (1.4) in B3ro, then

- 1. $u(x,y) \stackrel{\text{def}}{=} u(x,-y)$ is also a solution of (1,4)
- 2. $v(x,y) \stackrel{\text{def}}{=} u(x,y) + \widetilde{u}(x,y)$ and $v(x,y) \stackrel{\text{def}}{=} u(x,y) \widetilde{u}(x,y)$ are again solution of (1.4)
- 3. $\mathbf{r}(\mathbf{x},0) = 0$ and $\frac{\partial \mathbf{u}}{\partial \mathbf{y}}(\mathbf{x},0) = 0$
- 4. for $(x,y) \in l_1$,

$$\left| \begin{array}{ccc} \frac{\partial \mathbf{V}^{\pm}}{\partial \mathbf{N}} & (\mathbf{x}, \mathbf{y}) \right| &=& \left| \begin{array}{ccc} \frac{\partial \mathbf{V}^{\pm}}{\partial \mathbf{N}} & (\mathbf{x}, -\mathbf{y}) \right| \\ \\ \left| \begin{array}{ccc} \frac{\partial \mathbf{V}^{\pm}}{\partial \mathbf{T}} & (\mathbf{x}, \mathbf{y}) \right| &=& \left| \begin{array}{ccc} \frac{\partial \mathbf{V}^{\pm}}{\partial \mathbf{T}} & (\mathbf{x}, -\mathbf{y}) \right| \\ \\ \frac{\partial \mathbf{V}}{\partial \mathbf{N}} & (\mathbf{X}, \mathbf{y}) \frac{\partial \mathbf{V}}{\partial \mathbf{T}} & (\mathbf{X}, \mathbf{y}) \end{array} \right]^{\pm} = \left(\begin{array}{ccc} \frac{\partial \mathbf{V}}{\partial \mathbf{N}} & (\mathbf{X}, \mathbf{y}) \frac{\partial \mathbf{V}}{\partial \mathbf{T}} & (\mathbf{X}, \mathbf{y}) \end{array} \right]^{\pm}$$

5.the same properties as in 4 are also hold for •

6.
$$\langle AN, N \rangle | \mathbf{I}_{1} = \langle AN, N \rangle | \mathbf{1}_{2}$$
 $\langle AT, T \rangle | \mathbf{1}_{1} = \langle AT, T \rangle | \mathbf{1}_{2}$
 $\langle AN, T \rangle | \mathbf{1}_{1} = \langle AN, T \rangle | \mathbf{1}_{2}$
where
$$\mathbf{A} \stackrel{\text{def}}{=} \begin{bmatrix} \mathbf{a} & \mathbf{0} \\ \mathbf{0} & \mathbf{d} \end{bmatrix}$$

and N and T denote repectively the tangential and normal vectors on the internal domain D, that is,

$$N = \begin{bmatrix} (-\sin\theta_0, \cos\theta_0) & \text{on } l_1 \\ (-\sin\theta_0, -\cos\theta_0) & \text{on } l_2 \end{bmatrix} \text{ and } T = \begin{bmatrix} (\cos\theta_0, \sin\theta_0) & \text{on } l_1 \\ (\cos\theta_0, -\sin\theta_0) & \text{on } l_2 \end{bmatrix}$$

We recall the following important results done by [F,J,R] (for c^1 -domains), [V], and [D,K].

Let
$$L_0^P(\partial D) = \{ f \in L_P(\partial D) : \int_{\partial D} f d\sigma = 0 \}.$$

THEOREM [V],[D,K]. Let D be a bounded Lipschitz domain with connected boundary.

There is $\varepsilon = \varepsilon(D) > 0$ such that if 1 , then

(i)
$$S: L^{p}(\partial D) \rightarrow L_{1}^{p}(\partial D)$$
,
(ii) $-\frac{1}{2}I + K^{*}: L^{p}(\partial D) \rightarrow L_{0}^{p}(\partial D)$, and
(iii) $-\frac{1}{2}I + K^{*}: L^{p}(\partial D) \rightarrow L^{p}(\partial D)$

are invertible.

(See sec 2 for the relevent definitions of s and K^* .)

2. INVERTIBILITY OF LAYER POTENTIAL OPERATOR

For a natational simplicity, we assume

$$r_0 = \frac{1}{4}$$
 and $0 < \theta_0 \le \frac{\pi}{4}$

(We can apply exactly the same ideas in the general case) Let Ω denote the diamond shape domain:

 $\Omega = \{(x,y): -x\tan\theta_0 < y < x\tan\theta_0 \text{ and} (x-\cos\theta_0)\tan\theta_0 < y < -(x-\cos)\tan\theta_0\}$ S and \widetilde{S} the single layer potentials

$$Sf(X) = \frac{1}{2\pi} \int_{\partial \Omega} \log |X - Q| f(Q) d\sigma, X \in \mathbb{R}^2$$

$$\widetilde{Sf}(X) = \int \widetilde{\Gamma}(X - Q)f(Q)d\sigma, X \in \mathbb{R}^2$$

where $\widetilde{\Gamma}$ is the fundamental solution of operator $aD_x^2 + dD_y^2$ and for $P \in \partial \Omega$

$$K^*f(P) = \int \langle \nabla \Gamma(P-Q), N(P) \rangle f(Q) d\sigma$$

$$\partial \Omega$$

$$\widetilde{K^*f(P)} = \int_{\partial \Omega} \langle \nabla \Gamma(P-Q), N(P) \rangle f(Q) d\sigma.$$

THEOREM 2. The mapping

$$T: L^{2}(\partial \Omega) \rightarrow L^{2}(\partial \Omega) \text{ defined by}$$

$$(2.1) \qquad T(f) = \left(\frac{1}{2}I + K^{*}\right)f - \left(-\frac{1}{2}I + \widetilde{K^{*}}\right)\widetilde{S^{-1}}Sf$$

is invertible.

LEMMA 3. Given $f \in L^2(\partial\Omega)$ the function

$$u \stackrel{\text{def}}{=} \begin{bmatrix} u^+ \stackrel{\text{def}}{=} \widetilde{S(S^-1}Sf) & \text{in } \Omega \\ u^- \stackrel{\text{def}}{=} S(f) & \text{in } R^n \setminus \Omega \end{bmatrix}$$

satisfies the estimates

 $(2.2) \| (\nabla u^+) \| L^2(\partial \Omega) + \| (\nabla u^-) \| L^2(\partial \Omega)$

$$\leq C\{\|T(f)\|^2L^2(\partial\Omega) + \|(\nabla u^+)\|L^2(\partial\Omega)\|T(f)\|L^2(\partial\Omega) + Z(f)\}$$

where $Z(f_j) \rightarrow 0$ whenever $f_j \rightarrow 0$ weakly in $L^2(\partial D)$.

PROOF: It suffice to prove the estimates (2.2) for f(x,y)=f(x,-y) and f(x,y)=-f(x,-y). We first assume that f(x,y)=f(x,-y). We will use two vector field

where $\varphi = {}_{-}\!\!\!> \!\!\!\!> \!\!\!\! c_0([0,1/4))$ is a positive function, 1 in the interval [0,1/5], and $\alpha_1,\alpha_2,\beta_1$ and β_2 are constants. Recall the Rellich identites

$$div(a < \nabla u^-, \nabla u^-) = 2div(\langle a, \nabla u^- \rangle \nabla u^-) + O(|\nabla u^-|^2) \text{ in } \mathbb{R}^2 \setminus \Omega$$

and

$$div(\beta < \nabla u + \cdot \nabla u + \rangle) = 2div(<\beta, \nabla u + \rangle \nabla u + \rangle + O(|\nabla u + |^2) \text{ in } \Omega.$$

Integrating the above identities over $R^2 \setminus \Omega$ and Ω we get respectively

(2.3)
$$\int \langle a, N \rangle (\langle \nabla u^-, T \rangle^2 - \langle \nabla u^-, N \rangle^2) d\sigma$$

$$\delta\Omega$$

$$= 2 \int \langle a, N \rangle (\langle \nabla u^-, T \rangle \langle \nabla u^-, T \rangle d\sigma + O(\|(\nabla u^+)\|^2 L_2(B1))$$

and

= 2
$$\int \langle \beta, T \rangle (\langle A \nabla_{u^{+}}, N \rangle \langle \nabla u^{+}, T \rangle d\sigma + O(\|\nabla u\|^{2} L_{2}(B_{1}))$$

 $\delta \Omega$

Using the transmission conditions

->

$$\langle \nabla u^- \cdot T \rangle = \langle \nabla u^+, T \rangle$$
 on $\partial \Omega$
 $\langle \nabla u^- \cdot N \rangle = \langle A \nabla u^+, N \rangle + T(f)$ on $\partial \Omega$

and adding (2.3) and (2.4) we can get

 $=O(\|T(f)\|^2_{L^2(\partial\Omega)})+\|(\nabla u^+)\|L^2(\partial\Omega)\|T(f)\|^2_{L^2(\partial\Omega)}+(\|\nabla u\|^2_{L^2(B1)})$ Since u(x,y)=u(x,-y) for all $(x,y)\in R^2$, from the Symmetry properties mentioned above the left hand side integral of (2.5) can be written in the form

(2.6)
$$\int P(\alpha_1, \beta_1) \langle \nabla u^+, T \rangle^2 + Q(\alpha_1, \beta_1) \langle \nabla u^+, N \rangle^2 - 2R(\alpha_1, \beta_1) \langle \nabla u^+, T \rangle \langle \nabla u^+, N \rangle d\sigma$$
11
where

 $(2.10) \int |\nabla u|^2 d\sigma \le C \{ ||T(f)||^2_{L^2(\partial\Omega)} \} + ||(\nabla u^+)||_{L^2(\partial\Omega)} ||T(f)||^2_{L^2(\partial\Omega)} + (||\nabla u||^2_{L^2(B\Omega)}) + ||\nabla u^+||_{L^2(B\Omega)} + ||\nabla u^+||_$

where the constant c depends on θ_0 , a-d and ad-1. We can simmilary treat the case where f(x,y) = -f(x,-y) and the other three corners of the lozenge-shaped domain Ω to conclude the estimates (2.2) when $ad \neq 1$ and $a \neq d$.

When ad = 1 and $a \neq d$, from (2.8) we can see

$$\widetilde{(c_1c_2)} = (c_1, c_2) \left\{ \begin{array}{c} -a\sin^2\theta_0 - d\cos^2\theta_0 \\ a\cos^2\theta_0 + d\sin^2\theta_0 \end{array} \right\}$$

$$= -(c_1, c_2) \frac{\langle AN, N \rangle}{\langle AT, T \rangle}$$

and therefore we have

(2.11)
$$\int \{\langle AT, T \rangle \langle \nabla u^+, T \rangle^2 - \langle AN, N \rangle \langle \nabla u^+, N \rangle^2 \} d\sigma$$

 $O(\|T(f)\|^2_{L^2(\delta\Omega)}) + \|(\nabla u^+)\|L^2(\delta\Omega)\|T(f)\|^2_{L^2(\delta\Omega)} + (\|\nabla u\|^2_{L^2(B1)}).$

Let us assume again f(x,y) = f(x,-y). Applying the Rellich identity (2.4) with vector field $N_{12}\varphi$, we have from (2.11)

(2.12) $f_{11}\langle AVu^+, N\rangle\langle Vu^+, T\rangle d\sigma$

 $= O(\|T(f)\|^2_{L^2(\partial\Omega)}) + \|(\nabla u^+)\|L^2(\partial\Omega)\|T(f)\|^2_{L^2(\partial\Omega)} + (\|\nabla u\|^2_{L^2(B1)}).$

If we apply again Rellich formula (2.4) with vector field $e_2=(0,1)\psi$ over the domain $\Omega \cap \mathbb{R}^2$, we have

$$\int_{\{(x,0): 0 \le x \le 1/4\}} \langle AT, T \rangle \langle Vu^+, T \rangle^2 - \langle AN, N \rangle \langle Vu^+, N \rangle^2 d\sigma$$

$$= \int_{11} \langle e_2, T \rangle \langle A \nabla u^+, N \rangle \langle \nabla u^+, T \rangle d\sigma$$

+
$$\int_{11} \langle e_2, T \rangle (\langle AT, T \rangle \langle Vu^+, N \rangle^2 - \langle AN, N \rangle \langle Vu^+, N \rangle^2) d\sigma$$

But from the symmetry property (3), $\langle \nabla u^+, N \rangle = 0$, on $\{(x,0); x \in \mathbb{R}\}$ this together with (2.11),(2,12), and(2,13) we have

$(2.15) \int_{\{(x,0):0\leq x\leq 1/4\}} |\nabla u|^2 d\sigma$

 $= ((\|T(f)\|^2_{L^2(\partial\Omega)}) + \|(\nabla u^+)\|_{L^2(\partial\Omega)} \|T(f)\|_{L^2(\partial\Omega)} + \|\nabla u\|^2_{L^2(B1)}).$

From the same reason, applying the Rellich formula over the domain we connlude

 $(2.10)\int |\nabla u|^2 d\sigma \leq C\{\|T(f)\|^2_{L^2(\partial\Omega)}\} + \|(\nabla u^+)\|L^2(\partial\Omega)\|T(f)\|^2_{L^2(\partial\Omega)} + (\|\nabla u\|^2_{L^2(B\Omega)}) + \|\nabla u\|^2_{L^2(B\Omega)} +$

where the constant C depends on θ_0 , a-d and ad-1. We can simmilary treat the case where f(x,y) = -f(x,-y) and the other three corners of the lozenge-shaped domain Ω to conclude the estimates (2.2) when ad $\Rightarrow 1$ and $a \Rightarrow d$.

When ad = 1 and $a \neq d$, from (2.8) we can see

$$\widetilde{(c_1c_2)} = (c_1, c_2) \left\{ \begin{array}{c} -a\sin^2\theta_0 - d\cos^2\theta_0 \\ a\cos^2\theta_0 + d\sin^2\theta_0 \end{array} \right\}$$

$$= -(c_1, c_2) \frac{\langle AN, N \rangle}{\langle AT, T \rangle}$$

and therefore we have

 $O(\|T(f)\|^2_{L^2}(\delta\Omega)) + \|(\nabla u^+)\|L^2(\delta\Omega)\|T(f)\|^2_{L^2}(\delta\Omega) + (\|\nabla u\|^2_{L^2}(B1)).$ Let us assume again f(x,y) = f(x,-y). Applying the Rellich identity

(2.4) with vector field $N_{12}\varphi$, we have from (2.11)

(2.12) $\int_{11} \langle AVu^+, N \rangle \langle Vu^+, T \rangle d\sigma$ =0($\|T(f)\|^2_{L^2(\partial\Omega)}$)+ $\|(\nabla u^+)\|_{L^2(\partial\Omega)} \|T(f)\|^2_{L^2(\partial\Omega)} + (\|\nabla u\|^2_{L^2(B1)}).$

If we apply again Rellich formula (2.4) with vector field $e_2=(0,1)\psi$ over the domain $\Omega \cap \mathbb{R}^{2+}$, we have

$$\int_{\{(x,0):0\leq x\leq 1/4\}} \langle AT,T\rangle \langle VU^+,T\rangle^2 - \langle AN,N\rangle \langle VU^+,N\rangle^2 d\sigma$$

+
$$\int_{11} \langle e_2, T \rangle (\langle AT, T \rangle \langle \nabla u^+, N \rangle^2 - \langle AN, N \rangle \langle \nabla u^+, N \rangle^2) d\sigma$$

But from the symmetry property $(3), \langle \nabla u^+, N \rangle = 0$, on $\{(x,0); x \in \mathbb{R}\}$ this together with (2.11), (2,12), and (2,13) we have

$(2.15) \int_{\{(x,0):0\leq x\leq 1/4\}} |\nabla u|^2 d\sigma$

 $=0(\|T(f)\|^2_{L^2(\partial\Omega)})+\|(\nabla u^+)\|L^2(\partial\Omega)\|T(f)\|_{L^2(\partial\Omega)}+\|\nabla u\|^2_{L^2(B1)}).$ From the same reason, applying the Rellich formula over the domain we conclude

(2.15) $\int \{(x,0): 0 \le x \le 1/4\} |\nabla u|^2 d\sigma$

 $=0(\|T(f)\|^2_{L^2(\partial\Omega)})+\|(\nabla u^+)\|L^2(\partial\Omega)\|T(f)\|_{L^2(\partial\Omega)}+\|\nabla u\|^2_{L^2(B1)}).$ We can choose $h\in L^2(1_3)$ such that

$$(S_{13} + S_{13})h = 2S1_3(T(f)X_{\{(r,\theta_0):0 < r < 1/3\}}) \text{ on } l_3 \stackrel{\text{def}}{=} \{(s,\theta_0):-\infty < s < \infty\}$$

and

$$S_{13}h(X) = \int_{13}\Gamma(X,Q)h(Q)d\sigma$$

$$\widetilde{S_{13}}h(X) \stackrel{\text{def}}{=} f_{13}\widetilde{\Gamma(X,Q)}h(Q)d\sigma$$

Then it easy to show that if

(2.161)
$$w = \begin{cases} \frac{g_{13}(h - T(f)X\{(r, \theta_0): 0 < r < 1/3\}\})}{g_{13}(-h) \text{ in } (B_{1/2} \Psi \Omega \cap \mathbb{R}^2 + 1)} \end{cases}$$

 $\mathbf{w} = \mathbf{u} + \mathbf{v}$ s a weak soution of (1.4) in $B_{1/3} \cap \mathbb{R}^2_+$. Also the directional derivative

$$D\theta_0 \mathbf{W} \stackrel{\text{def}}{=} \langle (\cos\theta_0, \sin\theta_0), \nabla \mathbf{W} \rangle$$

is a week soution of (1.4) in $B_{1/3} \cap \mathbb{R}^2_+$. We have from the result of [C,F,M,S],

(2.17) $\int_{11} |D\theta_0 w|^2 d\sigma \le c \int_{\{(x,0): -1/4 < x < 1/4\}} |(D\theta_0 w)^*|^2 d\sigma \le c \int_{\partial(B1/4)} |(D\theta_0 w)^*|$

And from a well knowm result for positive subsolutions of elliptic equations,

 $\begin{aligned} &(2.18) & \sup\{|D\theta_0 \mathbb{W}(1/4,\theta)|^2:1/2\theta_0 \langle \theta \langle \pi - \theta_0 \rangle\} \leq \mathbb{C} f(\mathbb{B}_2/7 \backslash \mathbb{B}_1/8) \cap_{\mathbb{R}^{2+}}| \\ &D\theta_0 \mathbb{W}|^2 d\sigma \end{aligned}$

We can also apply the same argument as above for u and v separately in the set{ $(1/4,\theta):0<\theta<1/2\theta_0$ or $\pi-\theta_0<\theta\leq\pi$. Together with (2.16) and (2.18) the right hand side of (2.17) can be controlled by

 $\begin{array}{ll} (2.19) & \|T(f)\|^2_{L^2(\delta\Omega)}) + \|(\nabla u^+)\|_{L^2(\delta\Omega)} \|T(f)\|_{L^2(\delta\Omega)} + \|\nabla u\|^2_{L^2(B^1)} + \\ \|\nabla w\|^2_{L^2(B^{\frac{1}{2}})} & \end{array}$

We can get the estimate (2.2) the case where f(x,y) = -f(x,-y) by using (2.11) and repeating the argument as in the case where f(x,y) = f(x,-y).

PROOF OF THEOREM 2:Case 1 : ad < 1.

For $t \in [1/2max(a,b),1)$, the operator

$$T_{\mathbf{t}}:L^2(\partial\Omega)$$
 \to $L^2(\partial\Omega)$ defined by

$$T_t(f) = (1/2I + K^*) - t(-1/2I + \widetilde{K^*}) S^{-1} S f$$

is the transmission operator in the Theorem 2 corresponding to the operators

$$ta \frac{\partial}{\partial x} \frac{\partial}{\partial x} + td \frac{\partial}{\partial x} \frac{\partial}{\partial x}$$
 and Δ

inside and outside of $\boldsymbol{\Omega}$ respectively and therefore we have the estimates

 $(2.20) ||f||_{L^{2}(\partial\Omega)} \le C\{||T_{t}(f)||_{L^{2}\partial\Omega} + ||\nabla u||_{L^{2}(B_{1})}\}$

where the constant c is as in Lemma 3. Note that the above constant c dose not depend on t (in fact, from the estimates(2.10) c depends on c0, 1-ad, and a-d). From the deep result of [C,Mc,Me], we have

$$(2.11) ||(T_t - T_s)f|| \le C|t - s|||f||_{L^2(\partial\Omega)}$$

where the constant c depends on A and the Lipschitz character of Ω . Let

$$\varepsilon = \{s \in 1/2\max(a,d), 1\}: T_3 \text{ is invetible on } L^2(\partial\Omega)\}$$

Since $I - 1/2\max(a,d)A$ is positive definite, from Theorem 2.2 in section 2 it follows that T_a is invertible on $L^2(\partial\Omega)$ where $s=1/2\max(a,d)$. Hence ε is not empty.

 T_s is one-to-one for $s \in [1/2\max(a,d), 1]$; since if $T_s(f) = 0$, u as in the Lemma 3 is a week solution of the equation:

$$(2.22) \frac{\partial}{\partial x} \left\{ ((ta - 1)X\Omega + 1) \frac{\partial u}{\partial x} (x, y) \right\} + \frac{\partial \left\{ ((ta - 1)X\Omega + 1) \frac{\partial u}{\partial x} (x, y) \right\} = 0$$

in the entire \mathbb{R}^2 and therefore as in section 2 we can conclude $\mathbf{f} = 0$ in $\partial \Omega$.

It is easy to see from (2.21) that ε is open (see for example [G,T]). Now it remains to be shown that ε is closed. To do this assume $s_j \rightarrow s$ and $s_j \in \varepsilon$. For given $g \in L^2(\partial\Omega)$, we can find $f_i \in L^2(\partial\Omega)$ such that

$$T_{sj}(f_j) = g \text{ on } \partial \Omega$$

If $\|f_j\|_{L^2(\partial\Omega)} \le c < \infty$, we may assume that $f_j \to f$ weakly in $L^2(\partial\Omega)$. It is easy to see that $T_s(f_j) \to T_s(f)$ weakly in $L^2(\partial\Omega)$. (2.21) implies that for all $\phi \in L^2(\partial\Omega)$

$$\int_{\partial} (T_{s}(f) - g) \phi d\sigma = \int_{\partial} (T_{s}(f) - T_{s}(f_{j})) \phi d\sigma$$

$$+ \int_{\partial} (T_{s}(f_{j}) - T_{sj}(f_{j})) \phi d\sigma$$

$$-> 0 \text{ as } j -> \infty.$$

Hence $T_s(f) = g$ and T_s is onto.

If $\|f_j\|_{L^2(\partial\Omega)}$ are not bounde, we may assume that $\|f_j\|_{L^2(\partial\Omega)} = 1$ and $T_{sj}(f_j) \to 0$ strongly in $L^2(\partial\Omega)$. From (2.21), it is easy to see that $T_j(f_j) \to 0$ strongly in $L^2(\partial\Omega)$.

Since T_s is one to one, we may assume that $f_j \to 0$ weakly in $L^2(\partial\Omega)$. But

$$1 = \|\mathbf{f_j}\|_{\mathbf{L}^2(\partial\Omega)} \le C\|\mathbf{T_s}(\mathbf{f_j})\|_{\mathbf{L}^2(\partial\Omega)} + \mathbf{z}(\mathbf{f_j})$$

$$->0 \text{ as } j > 0$$

,a contradition. Therefore T_s is invertible and $\varepsilon = [1/2max(a,d),1]$. Case 2: ad >1.

Using a similar methods as in case 1 with now the operator

$$T_t(f) = t(1/2I + K^*) - (-1/2I + \widetilde{K^*}) \sim s^{-1}sf$$

we can show that T₁ is invertible.

Case 3: ad = 1

Suppose that T and ε are as in the proof of case 1. From case 1, we know that $[1/2\max(a,d),1] \subset \varepsilon$ and T_1 is one to one. We also have the estimates (2.21) but we don't have uniform estimates (2.20) in this case. However the estimates (2.19) is enough to prove T_1 is invertible if we repeat the arguments as in the case 1.

PROOF OF THEOREM 1: We may assume $\Omega \subset B_{ro}$. It is easy to see that

$$(\nabla u)^* \in L^2(\partial B_{3/2ro}) \cap L^2(\partial \Omega W B_{1/2ro}).$$

Set $\Xi = (B_{3/2ro} \ \ \ D) \cup \Omega$. We can find $h_1 \subseteq L^{2(\partial\Xi)}$ such that $S_{\partial\Xi}(h_1)(P) \stackrel{\text{def}}{=} \int_{\partial\Xi} \Gamma(P-Q)h_1(Q)d\sigma = u(P) P = \partial\Xi.$

We also can find $h_2 \in L^{2(\partial \Xi)}$ such that

$$h_2 = \langle \nabla S^- \partial h_1, N \rangle - \langle \nabla u^+, N \rangle$$
 on $\partial \Xi$

Then

$$\mathbf{w}_1 = \begin{bmatrix} u & \text{in } \Omega \\ u & + S \partial \Xi(h_2) & \text{in } \Xi \ \Psi \Omega \\ u & + S \partial \Xi(h_2) & + S \partial \Xi(h_1) & \text{in } R^2 \ \Psi \end{bmatrix}$$

$$\Delta \mathbf{w}_1 = 0 \qquad \text{in } R^2 \ \Psi \ \Omega.$$

Now we can take $h_3 \in L^{2}(\partial\Omega)$ such that

$$S(h_3) = v_1^+ - v_1^- \text{ on } \partial\Omega$$

From Theorem 2 we can find $f \in L^{2}(\partial \Omega)$ such that

$$T(f) = \langle A\nabla v_1^+, N \rangle - \langle \nabla (v_1 + S(h_3))^-, N \rangle$$
 on $\partial \Omega$.

It is then easy to see that

$$w_2 = - w_1 + \widetilde{S}(\widetilde{S}^{-1}Sf)$$
 in Ω

is a week solution of the equation

$$\frac{\partial}{\partial \mathbf{x}} \quad \left[((\mathbf{a} - 1)\mathbf{x}\Omega + 1) \frac{\partial}{\partial \mathbf{x}} (\mathbf{x}, \mathbf{y}) \right] + \frac{\partial}{\partial \mathbf{x}} \quad \left[((\mathbf{d} - 1)\mathbf{x}\Omega + 1) \frac{\partial}{\partial \mathbf{x}} (\mathbf{x}, \mathbf{y}) \right] = 0$$

in the entire R^2 and therefore $w_2 = 0$ in R^2 . Therefore we have a representation formula for u in B_{ro} which directly given us estimate(1.5)

REFERENCES

- s [C,F,M,S] L. caffarelli, E. fabes, S Motola, and S.Salsa, Boundary behavior of non-negative solutions of elliptic operators in divergence form, Ind. U. Math. J. 30(1981), 621-640.
- [C,Mc,Me] R.R.Coifman, A.McIntosh, Y.Meyer, L'integrale de Cauchy definit un operateur bornee sur L² pour courbes lipschitzienners, Annals of Math. 116(1982), 361-387.
- [D.K] B.E.J Dahlberg, C.E.Kenig, Hardy spaces and the Neumann problems in L² for Laplace's equation in Lipschitz domains, 125(1987), 437-465.
- [E,F,V] L.Escauriaza.E.B.Fabes, G.Verchota, On a regularity theorm for Weak Solution to Transmission Problem with Interal Lipschitz boundaries, To appear in the Proceeding of AMS.
- [E.S] L.Escauriaza, J.K.Seo, Reguarity Properties of Solutions to the Transmission problems, To apper
 - [F,J,R] E.B.fabes, M.Jodiet, N.M.Riviere, Potertial techniques for boundary value problems on C¹ domain, Acta Math. 141(1978),165-186.
- [L,R,U] O.A,Ladyzenskaja, V,Ja.Rivkind, N.N.Ural'ceva, The classical solvability of diffraction problems, Proc.Skelov.Inst.Math 92(1966), 132-166
- [L,S,U] O.A,Ladyzenskaja, V.A.Solonnikov N.N.Ural'ceva, Linear and Quasilinear equation of Parabolic type, A.M.S. transl.,A.M.S.Providence(1968).
- [N] J.Necas, Les Methods directes en theorie des equations elliptiques, Academia, Prague (1967).
- [S,W] J.Serrin, H.Weinberger, Isolated singularities of solutions of linear elliptic equations, Ame. J. of Math. 88(1966), 258-272

Sang-Ho Kum & Jin-Keun Seo

[St]

Stein E.M., Singular integrals and differentiability properties of function, Princeton University Press, New Jersey (1970).

[V]G.C.Verchota, Layer potentials and boundary value problems for Laplace's equation in Lipschitz domains, J. of Functional Analysis 59(1984), 572-611

