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1. INTRODUCTION

Let D be a bounded in Re(n>2)and let D c Bi,2 where Br is the ball at
the center 0 with the radius r. Denote By = B. Consider a
weak-solution u = W!.2(B), the space of square integrable function
with distributional derivatives in L2(B), of the discontinuous
elliptic equation:

n 5 | éu |
(0.1) A Vv laij(X)——— J =0 in B

[ €1

where
[aij(x) = alij XD + a2;;XRo§D
L(alij) and (a2i;j) are positive definite symmetric constant matrices.

We are interested in establishing a regularity estimates

(1.2)
I |(Vut)*|2do < oo
8D
where
(g*)*(Q) = sup{lg(X)|:1X-Ql<(1+e )dist(X,aD), XD }
and

(g7)*(Q) = sup{lg(X)|:12-Ql<(1+ e )dist(X,aD), X&Bs,4\D }
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In [L,R,Ul and [R,S,U}, where aD is locally the graph of a function in
he class We-n and p ) n the gradient of u is Holder continous up
to the boundary on the both sides of D.

But their method does not work for non smooth domain D.

Escauriaza, Fabes and Verchota [E,F,V] established (1.2) for any

bounded Lipschitz domains with a connected boundary when (alij)=I
and (aij)2 = kI. Here I denote the indenitity matrix.
Escauriaza and Seo [E,S] have established (1.2) for any bouneded
Lipschitz domain provided(alij-a2ij) is positive or negative
semidefinite matrix . They also established a similar results for
solutions to transmission problems for a elasticity and paraboic
equations. But the method they used to obtain(1.2) does not work in
all the situations.

We are now interested in removing the semi-postiveness restrictions to
the difference of coefficient matrices(alij-a2i;)[E,S]. In this
paper, we get a partial result in R?2 under some severe geometric
restriction.

Throughout this section we assume that the internal domain D
satisfies

(1.3) DnBsro ={(r,0):0sr<3ro, - 80< 8 < OBo}
so that aD n Bsro consists of line segments

1; = {(r,00):0 sr<ro} and
12 = {{r,-00):0 < T <To}.

THEOREM 1. If u is a week-solution of the transmission problem:

(1.4) z_Xi_[ ((a_l)ml)ng (X, ¥) ] gx [ ((a-I)XD+1) (x, ¥) ]

in Bzro,for any @ ) 0 and d ) O then we have the estimate

(1.5) I(llulZ) [(Vut)*|2do < oo

Since D n Bzro is symmetric with respect to x-axis, we may use the
following useful properties:
SYMMETRY PROPERTIES. If u is a weak-solution of (1.4) in Bsro,then

1. E(x,y) def y(x,-y) is also a solution of (1,4)

defy(x,y) + u (x,y) and

2. v(x,5)
£ ~
v(x,y) o u (x,y) - u (x,y) are again solution of (1.4)

3. v(x,0) =0 and %‘; (x,0) = 0
4, for( x,y) € I,
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vt vt

I W (x’ Y)I = l aN (X, -Y)I
ovi - i -
| 57 (xy)l = | 35 (x,-y)l

(G wn )l Feng wnl

5.the same properties as in 4 are also hold for »

6.<aN, N> | = <aN,¥>112 KAT,T>|11 = <AT,T>|12
<AN,T>|11 = <AN,T>|12
vhere def [a 0]
Lo d}

and ¥ and T denote repectively the tangential and normal vectors on
the internal domain D,that is,
(-sin@o,co500) on 13 (cosBo,sinBo) on 1
N = [ and T = [
(-sin@o,-cosBo) on 13 (cosBo,-sinB@o) on 12
We recall the following important results done by [F,J,Rl(for

Cct-domains), [V], and [D,K1.
Let L2(aD) = { £ & Le(aD) : 1, fdo = 0}.

THEOREM [V1,[D,K]. Let D be a bounded Lipschitz domain with connected
boundary.
There is € = (D) > 0 such that if 1 < p < 2+¢, then

(i) S:Lp(aD) ->L}(aD),
(ii) - % I+ K* : Lp(aD) -> Lo*(8D), and

(iii) % I + K*¥ : Lp(aD) -> Lr(aD)

are invertible.
(See sec 2 for the relevent definitions of S and K*.)

2. INVERTIBILITY OF LAYER POTENTIAL OPERATOR

For a natational simplicity, we assume

l'n=—‘11 and 0 < @0 < z—

(We can apply exactly the same ideas in the general case) Let Q
denote the diamond shape domain:
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0 = {(x,y):-xtan@o< y <xtan@o and{x-cos@o)tanO o<y { -(x-cos)tanBo}

S and S the single layer potentials

1
Sf(X) = —5;— faQ log|X - QIf(Q)do, X=R2
SE(X) = f T(X - Q)f(Q)do, X=R?

where F“is the fundamental solution of operator aDi + dD§ and for
Pe 3Q

R*f(P)= [ <WI'(P-Q),N(P)>f(Q)do
aQ

E;f(P)= I Q<VE?P-Q),N(P)>f(Q)do.
a

THEOREM 2. The mapping

T:12(8Q) -> L2(8Q) defined by

(2.1) T(f) = ( —%— I+ K*)f - (- —%— I+ E;)E?ISf
is invertible.

LEMMA 3. Given f = 12(3Q) the function

CON A
def ut = S( S°1sf) in Q
u-= [ def .

u = §(f) in Rm\Q

satisfies the estimates

(2.2) I(va*)IL2(aQ) + I(Vu-)lL2(aQ)
< C{IT(£)NI2L2¢aQ ) + I(Va*)IL2(3Q)IT(f)IL2(8Q)+Z(f)}
where Z(fj) -> 0 whenever fj -> 0 weakly in L2(aD).

PROOF:It suffice to prove the estimates (2.2) for f(x,y)=f(x,-y) and
f(x,y) = - f(x,~y). We first assume that f(x,y)=f(x,-y). We will use
two vector field

- N

[ [
a(x,y)=(a1,az)e(y x2+y2 ) and 8 = (B1,B2)e(y x2+y2 )

where ¢ € ->8:([0,1/4)) is a positive function, 1 in the interval
[0,1/5], and a1,az2,.B1 and B2 are constants. Recall the Rellich
identites
div(a <Vu--Vu->) = 2div(<a,Va->Vu-) + O(|Va-|2) in R2\Q
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and -> ->
div(8 <Vu+ Vu+d) = 2div(<B,Vu+dVu+) + 0(|Vu+|2) in Q.

Integrating the above identities over R2\Q and Q we get respectively

(2.3) -
I <a,N>( {Vu~-T>2 - {Yu~,N>2)do
8Q
->
= 2 [ <a,N>(<Vu-T>}Vu~,T>do + O(Il{Ve*)l2L2(B1))
6Q
and
->
(2.4) [ <B,N>( <Vu*,TXVu*,T> - <aVy*,N>Vu*,N>)do
6Q

->
=2 [ <B,T>(<AVu*,NXVu*,T>do + O(IVuli2L2(B1))
6Q
Using the transmission conditions
<Vu--T> = {Vu*,T> on aQ
<Vu--N> = {AVu* ,N> + T(f) on aQ
and adding (2.3)and (2.4) we can get

-> ->
— <Vt , T2 B ,N>(AT,T> - 2(B,T><AT,N> 1 —
| +(1-<AT-N>2)<a,N> - 2<a,T><AT,N> )
-2 ->
(2.5)f + Vu*,T>2(-<AN-N>< S ,N>, - <AN-N>2<a,N>)
11012 - N do
- 2ZVu* ,T><Vu* N> [<AN-N>{ B ,T>+<AT-N><AN-N><a, N>)
L -
+<AN-N> J

=0(IIT(£)N2L2(3Q) )+ (Vu* )IL2 (8Q)IT (£ )21z (8Q)+(IVTli2L2(B1)
Since u(x,y) = u(x,-y) for all (x,y) € R2, from the Symmetry
properties mentioned above the left hand side integral of (2.5) can
be written in the form

(2.6) fP(a1,B1)XVu*,T>2 + Q(a1,B1 )XVu* ,N>2 - 2R(a1, B1 XVu* ,T>XVu* N>do

it
where
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(2.IO)IIVulszSZC{HT(f)Hsz(aQ))+H(Vu*)HL2(aQ)HT(f)Hsz(aQ)+(HVquLz(n
nl.u

where the constant C depends on 6o, a-d and ad-1. We can simmilary
treat the case where f(x,y) = -f(x,-y) and the other three corners
of the lozenge-shaped domain @ to conclude the estimates (2.2)
when ad =+ 1 and a = d

When ad = 1 and a = d,from (2.8) we can see

{ - asin20p - dcos26p )

| acos20o + dsin200 )

?21;;) = (c1,c2)

<AN,N>
< AL,D>

= -(c1,c2)
and therefore we have

(2.11) j {<aT, T><Vu*,T>2 - <{aN,N)<Vu*,N>2}do
a0
O(UT(f)li2L2(8Q) )+ (Vu* ) IL2(8Q)IT(£)I2L2 (8Q)+(IIVull2L2(B1)).
Let us assume again f(x,y) = f(x,-y). Applying the Rellich identity
(2.4) with vector field Niz2¢, we have from(2.11)

(2.12) f11<avu* ,N><VWu*,T>do
=0(IIT(£f )22 Q) )+ (Vu*)IL2 (3Q)T(£)NI2L2(aQ)+(IValiZL2(B1)).

If we apply again Rellich formula (2.4) with vector field ez=(0,1) %
over the domain QnR2., we have

I{(x.0):on51/4)<lT,T><Vu*,T>2 - AN, NXXVu* ,N>2do
= ]11(82,T)(AVU*,N)(VU*,T)da

+ I11<ez,T>(<AT,T><Vu+,N>2 - <aN,NX<Vu* ,N>2)do

But from the symmetry property (3),<Ve*,M>=0,on {(x,0);x=R}
this together with (2.11),(2,12), and(2,13) we have

(2.15) I{(x,o):on51/4}|V"|zd°
=0(NT(F)N12L2(3Q) )+ (Vu* ) IL2 (8Q)IT(F )iiL2 (8Q) HIVUN2L2(B1) ).

From the same reason, applying the Rellich formula over the domain
we connlude

e — e e
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(2.10)!IVuIzdos;C{ﬂT(f)Hsz(aQ))+H(Vu*)HLz(aQ)“T(f)“sz(aQ)+(“VuH2Lz(3
nl}.

where the constant C depends on 6o, a-d and ad-1. We can simmilary
treat the case where f(x,y) = -f(x,-¥) and the other three corners
of the lozenge-shaped domain @ to conclude the estimates (2.2)
when ad = 1 and a * d

When ad = 1 and a = d,from (2.8) we can see

- asin20¢ - dcos26o |

| acos20p + dsin26o J

?21;;) = (c1,¢2)

<aN,N>
< AL,

= —(c1,c2)

and therefore we have

(2.11) I {<ar, T>XVu*,T>2 - <AN, N)<Vu* ,N>2 }do
a0
O(NT(f)Hsz(GQ))+H(Vu*)HLz(BQ)HT(f)HZLz(60)+(HVUHsz(nl)).
Let us assume again f(x,¥) = f(x,-¥). Applying the Rellich identity
(2.4) with vector field Nize, we have from(2.11)

(2.12) f11<avu ,N<Vu*,T>do
=O(HT(f)H2Lz(aQ))+H(Vu*)HLZ(aQ)“T(f)Hsz(aQ)+(HVu“sz(Bl)).

If we apply again Rellich formula (2.4) with vector field e2=(0,1)%
over the domain QnR%., we have

I{(x.o):on51/4)<AT,T><VU*,T>2 — AN, N)XVu* N>2do
= I11<ez,T><1Vu*,N>(Vu*,T>do

+ Ill<ez,T>(<1T,T><Vu*,N>z — <AN,N)<Vu* ,B>2)do
But from the symmetry property (3),<vu*,0>=0,0on  {(x,0):x=R}
this together with (2.11),(2,12), and(2,13) we have
(2.15) ]{(x.o):onSl/4)|Vu|zdo

=0(HT(f)u2Lz(aQ))+H(Vn’)HLz(aQ)HT(f)HLz(80)+HVuH2Lz(51)).
From the same reason, applying the Rellich formula over the domain
we connlude
(2.15) fi(x.0):05x<1/4}|Val2do
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=0("T(f)HZLz(ao))+H(VU’)HLZ(BQ)"T(f)"Lz(aQ)+"VU"2L2(Bl)).
We can choose heL2(13)such that

~ def
&gé§e+ S13)h = 2813(T(f)X{(r,00): 0<r<1/3}) On 13°2 {(s,00) : -00(s<00}

def

S13h(X) = jlsI‘(X,Q)h(Q)dO
and

s13h(X)"" 113T(X,Q)h(Q)do

Then it easy to show that if
(2.161) o dof [ ‘f\lf‘(h - '.f'(f)x{(r,oo):oqq/s}) in QnR2,nBy /2
¥13(-h) in (B1,/2¥QnR2.)
V. =u+7vs aweak soution of (1.4) in Bi,3nR2.. Also the directional
derivative

def
DOoW = <(cosBy, sind),Ww>

is a week soution of (1.4) in Bi/snR2.. We have from the result of
{C,F,M,S1,

(2.17) ju IDGOWIZdOSCf{(x, 0):—1/4<x<1/4}I(DeoV)‘IdeSCfa(Bxu n
R2+) [DOoW | 2do.

And from a well knowm result for positive subsolutions of elliptic
equations,

(2.18) Sup{ | DOoW(1/4,6)12:1/200<6< 200} < Cf(B2/7\B1/8) NR2s |
DOoW|2do

We can also apply the same argument as above for u and v separately in
the set{(1/4,0):0<6<1/200 or x-60 < 6 < =x. Together with (2.16)
and (2.18) the right hand side of (2.17) can be controlled by

(2.19) HT(£)12L2 (6Q) )+ (Va*) IILZ(SQ)IIT(f)Ile(60)+l|VuIlsz(Bl )+
IVWiI2L2(B2%)
We can get the estimate (2.2) the case where f(x,y) = -f(x,-y)

by using (2.11) and repeating the argument as in the case where
f(x,y) = f(x,-y).

PROOF OF THEOREM 2:Case 1 : ad < 1.

For te[1/2max(a,b),1), the operator

Te:12(0Q) -> L2(aQ) defined by

Te(f) = (1/2I + R*) - t(-1/2I + E;)STTSf
is the transmission operator in the Theorem 2 corresponding to the
operators
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a a 2 a
ta —— + td — — and A
ax ax ax ax

inside and outside of Q respectively and therefore we have the
estimates

(2.20)  lfliLz(a0) < C{UT¢(f)lL200+IVullL2(B1)}

where the constant € is as in Lemma 3. Note that the above constant C
dose not depend on t (in fact, from the estimates(2.10) C depends on
00, 1-ad,and a-d). From the deep result of [C,Mc.Mel, we have

(2.11)  I(Te-Ts)fll < Clt-s|lfliLz(30)

where the constant C depends on A and the Lipschitz character of Q.
Let
e= {se1/2max(a,d),11:T3 is invetible on L2(aQ)}

Since I - 1/2max(a,d)d is positive definite,from Theorem 2.2 in
section 2 it follows that Ta is invertible on L2(aQ) where
s=1/2mas(a,d). Hence & is not empty.

Ts is one-to-one for s€ [1/2max(a,d), 11; sinec if Ts(f) = 0, u as in
the Lemma 3 is a week solution of the equation:

(2.22) 2 [((ta -1)X0 + 1) 2 (x,y)] + a—[
l ax J  axl
in the entire R2 and therefore as in section 2 we can conclude f = 0
in aQ .
It is easy to see from (2.21) that € is open (see for example [G,T1).
Now it remains to be shown that ¢ is closed. To do this assume s; ->
s and sj € €. For given ¢ € L2(aQ), we can find fi € L2(aQ)
such that

au 1
((ta -1)x0 + 1) — (x,y) =0
ax ox J]

Tsj(f5) = g on aQ

If NfjllL2(8Q) < ¢ < oo, we may assume that f; -> f weakly in L2(aQ).
It is easy to see that Ts(fj) -> Ts(f) weakly in L2(8Q). (2.21)
implies that for all ¢ € L2(aQ)

] (Ts(f) - g) ¢do = ! (Ts(f) - Ts(£fj)) ¢do
) ]

+ ! (Ts(f5) - Tsj(fj)) ¢do
F}
->» 0 as j -> oo,
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Hence Ts(f) = g and Ts is onto.

If If;lIL2¢3Q) are not bounde, we may assume that IfjlL2¢aQ) =1 and
Tsj(fj) -> 0 strongly in L2(8Q). From (2.21), it is easy to see
that Tj(f;j) -> 0 strongly in L2{aQ).

Since Ts is one to one, we may assume that fj -> 0 weakly in LZ{(aQ).
But

1 = If51L2¢8Q) < ClTs(£;)1L2¢3Q) + 2z(f5)
->0 as j >0
,a contradition. Therefore Ts is invertible and & = [1/2max(a,d),1].
Case 2 : ad >1.
Using a similar methods as in case 1 with now the operator

To(f) = t(1/2I + K*) - (-1/21 + K* ) s-1sf

we can show that T1 is invertible.

Case 3: ad =1

Suppose that T and € are as in the proof of case 1. From case 1, we
know that [1/2max(a,d),1]1 < & and T1 is one to one. We also have
the estimates (2.21) but we don’t have uniform estimates (2.20) in
this case. However the estimates (2.19) is enough to prove T1 is
invertible if we repeat the arguments as in the case 1.

PROOF OF THEOREM 1: We may assume QCBro. It is easy to see that

(Vu)* € L2(8Bs/2ro) N L2(3QW Bi/2ro).

Set = = (Bss2ro WD) U Q. We can find by € L2(3Z ) such that

5_(h1)(P)'') [(P-0)hi (0)do = u(P) PEdE.

We also can find hz € L2(32) such that

hz = <VS-ah1, N> - <Vu*, N> on 9=
Then

u in Q
Vi = u + Sa=(hz2) in = ¥Q
u + Sa=(h2) + Sa=(h1) in R2\Z
Avy = 0 in 2 ¥ Q.
Now we can take hs € L2(aQ) such that

S(hs) = w1* - w1~ on aQ

From Theorem 2 we can find fL2(aQ) such that
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T(f) = <AWw1*, N> - <V(v1 + S(hg))~, N> on aQ.

It is then easy to see that
v’ w45 (s1sf) in ©
- @+ S(f) + S(hs) in R2 ¥Q
is a week solution of the equation
F

8 eta-mo+1)2 (x.y)] ¢ 2 [((d -0 + 1) 2 ()]0
ox ox ox ox

in the entire R2  and therefore w2 = 0 in R2. Therefore we have a
representation formula for u in Bro vhich directly given us
estimate(1.5) ’

REFERENCES

s [C,F,M,S] L. caffarelli, E. fabes, S Motola, and S.Salsa, Boundary
behavior of non-negative solutions of elliptic operators in
divergence form, Ind. U. Math. J. 30(1981), 621-640.

[C,Mc,Mel R.R.Coifman, A.McIntosh, Y.Meyer, L’integrale de Cauchy
definit un operateur bornee sur L2 pour courbes lipschitzienners,
Annals of Math. 116(1982), 361-387.

[D.K] B.E.J Dahlberg, C.E.Kenig, Hardy spaces and the Neumann problems
in L2 for Laplace’s equation in Lipschitz domains, 125(1987),
437-465.

[E,F,V] L.Escauriaza.E.B.Fabes, G.Verchota,On a regularity theorm for
Weak Solution to Transmission Problem with Interal Lipschitz
boundaries, To appear in the Proceeding of AMS.

[E.S] L.Escauriaza, J.K.Seo, Reguarity Properties of Solutions to the
Transmission problems,To apper
{F,J,R] E.B.fabes, M.Jodiet, N.M.Riviere, Potertial techniques for
boundary value problems on C! domain, Acta Math. 141(1978),165-186.

{L,R,U1 0.A,Ladyzenskaja, V,Ja.Rivkind, N.N.Ural’ceva, The classical
solvability of diffraction problems, Proc.Skelov.Inst.Math 92(1966),
132-166

{L,S,U]1 O0.A,Ladyzenskaja, V.A.Solonnikov N.N.Ural’ceva, Linear and
Quasilinear equation of Parabolic type, A.M.S.
transl.,A.M.S.Providence(1968).

[N] J.Necas, Les Methods directes en theorie des equations
elliptiques, Academia,Prague(1967).

[S,W1 J.Serrin, H.Weinberger, Isolated singularities of solutions of
linear elliptic equations, Ame.J.of Math.88(1966), 258-272

— 43—



Sang-Ho Kum & Jin-Keun Seo

[St]

Stein E.M, Singular integrals and differentiability properties' of
function, Princeton University Press, New Jersey(1970).

[V1G.C.Verchota, Layer potentials and boundary value problems for
Laplace’s equation in Lipschitz domains, J. of PFunctional Analysis
59(1984), 572-611




