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PURELY INFINITE CUNTZ-KRIEGER ALGEBRAS OF
DIRECTED GRAPHS

JEONG HEE HONG anp WOJCIECH SZYMANSKI

ABSTRACT

For arbitrary infinite directed graphs E, the characterisation of the (not necessarily simple) Cuntz—Krieger
algebras C*(E) which are purely infinite in the sense of Kirchberg-Rerdam is given. It is also shown that
C*(E) has real rank zero if and only if the graph E satisfies Condition (K).

Introduction

Purely infinite simple C*-algebras were first defined and investigated by Cuntz [4,
5]. They have the characteristic property that for every non-zero element x there
exist a,b such that axb = 1. A large class of examples of such algebras is provided
by simple Cuntz-Krieger algebras [6]. In two recent articles [16, 17], Kirchberg
and Rerdam extended the concept of pure infiniteness to the case of non-simple
C*-algebras. According to [16, Definition 4.1], a C*-algebra A is purely infinite if it
has no characters and if, for every pair of positive elements x,y in 4 such that y
lies in the closed two-sided ideal generated by x, there exists a sequence a, € A such
that a;xa, — y. If A is simple, then the Kirchberg-Rerdam definition agrees with
that of Cuntz. It is the purpose of this note to give a convenient characterization of
generalized Cuntz-Krieger algebras based on directed graphs that are purely infinite
in the sense of Kirchberg—Rordam.

Quite recently, the theory of graph algebras has been developed by a number of
researchers (see [1, 2, 7, 9, 18, 19, 20, 21], among others) in an attempt to produce
a far-reaching and yet accessible generalization of the Cuntz—Krieger algebras of
finite matrices. Indeed, graph algebras do provide a large and interesting class of
examples of C*-algebras, both simple and non-simple ones. Questions related to
infiniteness entered their theory almost from the beginning. However, in most of the
previous papers on the subject, pure infiniteness of a C*-algebra 4 was understood
as the property that every non-zero hereditary subalgebra of 4 should possess an
infinite projection. This coincides with Cuntz’s definition for simple C*-algebras, but
disagrees with the Kirchberg-Rerdam definition for many non-simple C*-algebras.
For example, the minimal unitization of the stable ¢, has this property, but is not
purely infinite in the sense of Kirchberg-Rordam [16, Example 4.6]. (Note that
the minimal unitization of the stable ), is an example of a graph algebra; the
corresponding graph has two vertices v, w, two edges with sources and ranges at w,
and infinitely many edges from v to w.) The key result states that if E is a countable
directed graph, then every non-zero hereditary subalgebra of C*(E) has an infinite
projection if and only if the following two conditions are satisfied: (i) every loop in
E has an exit, and (ii) every vertex connects to a loop by an oriented path.
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This result was originally proved for locally finite graphs without sinks in [18,
Theorem 3.9]. (An alternative proof was given in [15, Theorem 5.1].) It was then
extended to arbitrary row-finite graphs in [2, Proposition 5.3 and Remark 5.5],
and proved in full generality in [7, Corollary 2.14]. Analogous results were also
obtained for other, but related, classes of generalized Cuntz-Krieger algebras in [8,
Theorem 16.2] and [22, Theorem 4.4].

Pure infiniteness of graph algebras in the sense of Kirchberg-Rerdam was
considered by Hjelmborg in [10], and by Jeong and Park in [14]. In both these
papers, only locally finite graphs are studied; that is, graphs such that each vertex
emits and receives only finitely many edges. For such graphs, a number of conditions
equivalent to pure infiniteness of C*(E) is given in [10, Theorem 3.1] and (14,
Corollary 4.1]. Our main result, Theorem 2.3, gives several such conditions for an
arbitrary graph E. The proof relies heavily on the classification of gauge-invariant
ideals of C*(E) from [1]. In particular, we show that all purely infinite graph algebras
satisfy the stronger condition that every nonzero hereditary C*-subalgebra in every
quotient contains an infinite projection. Furthermore, we show that all such graph
algebras have real rank zero. We then characterize the C*-algebras C*(E) with real
rank zero as those for which E satisfies Condition (K) of [19], thus extending the
analogous result for locally finite graphs of Jeong and Park [14, Theorem 4.1]. After
this paper had been submitted, we learnt that Jeong had obtained a different proof
of Theorem 2.5; see [13].

1. Preliminaries on graph algebras

We recall the definition of the C*-algebra corresponding to a directed graph [9].
Let E = (E%, E!,r,s) be a directed graph with countably many vertices E® and edges
E!, and range and source functions r,s : E! — E°, respectively. C*(E) is defined
as the universal C*-algebra generated by families of projections {P, : v € E®} and
partial isometries {S, : e € E 11, subject to the following relations:

(GA1) P,P, =0 for v,w € E®, v # w;

(GA2) S:S;=0fore,f€E,e#f;

(GA3) S:S, = Py for e € E;

(GA4) S.S, < Py for e € E;

(GAS) Py =Y ,cpt: s(eymoSeSe fOI v € EO such that 0 < |s~1(v)| < oo.

‘Universality’ in this definition means that if {Q, : v € E° and {T. : e € EY}
are families of projections and partial isometries, respectively, satisfying conditions
(GA1)~(GAS), then there exists a C*-algebra homomorphism from C°(E) to the
C*-algebra generated by {Q, : v € E°} and {T. : e € E'} such that P, — @, and
S,+» T, forve E® e € EL.

It follows from the universal property that there exists a gauge actiony : T —
Aut(C*(E)) such that y,(P,) = P, and y,(S.) = tS, for allv € E% ecE!, teT.

If a,...,a, are (not necessarily distinct) edges such that r(o;) = s(ait1) for
i=1,..,n—1, then a = (a1,...,0) 1s a path of length |x| = n, with source
s(a) = s(a;) and range r(a) = r(a,). A loop is a path of positive length whose source
and range coincide. A loop o has an exit if there exist an edge e € E! and an index
i such that s(e) = s(a;) but e # o;. If o is a loop all of whose vertices belong to a
subset M < E°, then we say that o has an exit in M if an edge e exists as above
with r(e) € M. A graph is said to satisfy Condition (K) if every vertex v € E° lies
on no loops, or if there are two loops a and u such that s(a) = s(u) = v and neither
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a nor p is an initial subpath of the other [19]. A graph is row-finite if every vertex
emits only finitely many edges.

By an ideal in a C*-algebra we always mean a closed two-sided ideal. An ideal J
is called gauge-invariant if y,(J) < J for all t € T. In order to understand the ideal
structure of a graph algebra, it is convenient to look at saturated hereditary subsets
of the vertex set. As usual, if v,w € E°, then we write v > w when there is a path
from v to w, and we say that a subset K of E° is hereditary if v € K and v > w
imply that w € K. A subset K of E° is saturated if every vertex v that satisfies
0 < [s7!(v)] < oo and s(e) = v = r(e) € K itself belongs to K. If X < E°, then
X(X) is the smallest saturated subset of E° containing X, and ZH(X) is the smallest
saturated hereditary subset of E° containing X. If K is hereditary and saturated,
then Ix denotes the ideal of C*(E) generated by {P, : v € K}. As shown in [I,
Proposition 3.4], the quotient C*(E)/Ik is naturally isomorphic to the graph algebra
C*(E/K). The quotient graph E/K was defined in [1, Section 3]. The vertices of
E/K are

(E°\K)U {B(v) : v € KI"},
where
KP={ve E°\K :|s7(v)| = 0 and 0 < |s~'(v) N r}(E® \ K)| < 0}
The edges of E/K are
r ™ (E°\K)U {B(e) : e € E!,r(e) € Kin},
with the source and range functions extended by

s(B(e)) = s(e) and r(B(e)) = B(r(e)),

respectively. Note that all extra vertices S(K) are sinks in E/K. If Kfi" = &, then
E/K is simply a subgraph of E (the restriction of E to E®\ K), and is hence denoted
E\K.If v € Kfi®, then we write

Pix= Y 8.5,
s(e)=v,r(e)¢K
For B < K, the ideal of C*(E) generated by Ix and {P, — P,k : v € B} is denoted
by Jk,s. By [1, Corollary 3.5], the quotient C*(E)/Jx p is naturally isomorphic to
C*((E/K) \ B(B)). Clearly, every ideal J p is gauge-invariant, since it is generated
by projections fixed by the gauge action. It is shown in [1, Theorem 3.6] that all
gauge-invariant ideals of C*(E) are of the form Jk p.
In the discussion of primitive gauge-invariant ideals it is useful to use the following
notation. For X < E°, Q(X) is defined as the collection of vertices w € E®\ X such
that there is no path from w to any vertex in X. That is,

QX)={weE°\X :w#vforallv e X)}.

A non-empty subset M < E° is a maximal tail (see [1, Lemma 4.1]) if it satisfies
the following three conditions.

(MT1) Ifve ES, we M, and v > w, then v € M.

(MT2) If v € M and 0 < |s7}(v)] < oo, then there exists e € E! with s(e) = v and

rie) e M.

(MT3) For every v,w € M there exists y € M such thatv >y and w > .
If M is a maximal tail, then Q(M) = E° \ M. We denote by .#(E) the collection of
all maximal tails in E. However, not all maximal tails give rise to gauge-invariant
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ideals, but only those in which every loop has an exit. We denote the set of all such
maximal tails in E by .#,(E). We employ an analogous notation, Prim,(C*(E)), to
denote the set of all primitive gauge-invariant ideals in C*(E).

A v € EV is a breaking vertex if 0 < |s71(v) \ r"1(Q(v))| < o0 and |s~}(v)| = co. The
collection of all breaking vertices is denoted BV(E). If a vertex v emits infinitely
many edges, then Q(v) is automatically saturated and hereditary. In particular, if
v € BV(E), then Q(v) is saturated and hereditary. Note that if K < E° is hereditary
and saturated and v € K", then v € BV(E). As shown in [1, Theorem 4.7, there is
a one-to-one correspondence between .#,(E) U BV(E) and Prim,(C*(E)), given by

'/”'V(E) SM—> JQ(M),Q(M)E';‘ € Prlmy(C'(E)),
BV(E)S v «— JQ(u),Q(v)gﬁ,;'\{v} € Prlmy(C'(E))

2. Purely infinite graph algebras

The following simple result belongs to the folklore in the field, although we cannot
recall its explicit statement in the literature. In the context of the Cuntz—Krieger
algebras of finite matrices, it goes back to [11], and it is contained in the results
of [12]. For the sake of completeness, we include the proof.

LEMMA 2.1. Let E be a directed graph. If there is a loop without exits in E, then
C*(E) contains an ideal that is not invariant under the gauge action.

Proof. Let v be a vertex that lies on a loop without exits in E. Then the ideal
I, of C*(E) generated by P, is Morita equivalent to C(T); see [18]. So it suffices to
show that the only gauge-invariant ideals of C*(E) contained in I, are {0} and I,
itself. Let J be such an ideal. If J # {0}, then thereisa w € E° such that P,, € J, by
the gauge-invariant uniqueness theorem [1, Theorem 2.1]. We have w € XH(v) by
[1, Lemma 3.2]. Since ZH(v) = Z(v), there is a path from w to v. Thus P, € J, and
consequently J = I,,. O

Before proving our main result, Theorem 2.3, we need the following Lemma 2.2.
The implication (a)=>(c) of this lemma is already known (see [2] for the row-finite
case, and [7] for the general case).

LEMMA 2.2. If E is a directed graph, then the following conditions are equivalent.
(a) The graph E satisfies Condition (K).

(b) All loops in each maximal tail M have exits in M.

(c) Every ideal of C*(E) is gauge-invariant.

Proof. (a) = (b). This is obvious. _ :

(b) = (¢). The proof of this implication is almost identical with that of [1,
Corollary 3.8]. We give it here for the sake of completeness.

It suffices to show that every primitive ideal J of C*(E) is gauge-invariant. For
sucha J,let K={veE®:P,€J}and B={v €Ki : P, P,x € J}. We have
Jx g < J. Both quotients C*(E)/Jk g and C*(E)/J are generated by Cuntz—Krieger
((E/K) \ B(B))-families in which all projections associated to vertices are different
from zero. The set M = E° \ K is a maximal tail by [1, Lemma 4.1], and hence
every loop in M has an exit in M, by hypothesis. It follows that all the loops in
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(E/K)\ B(B) have exits. Thus, two applications of the Cuntz-Krieger uniqueness
theorem [20, Theorem 1.5] show that both quotients C*(E)/Jk s and C*(E)/J are
canonically isomorphic to C*((E/K) \ B(B)). Consequently, the quotient map of
C*(E)/Jk.p onto C*(E)/J is an isomorphism, and J = Jx p is gauge-invariant.

(c) = (a). Suppose that the graph E does not satisfy Condition (K). Then there
exists a vertex v € E® and a loop o with s(a) = v such that « is an initial subpath
of any other loop u with s(x) = v. It follows that Q(v) is a saturated hereditary
subset of E® and v ¢ Q(v). By [1, Corollary 3.5], the quotient C*(E)/Jau)ap) i
canonically isomorphic with C*(E \ Q(v)). Note that a is a loop without exits in the
graph E \ Q(v). Indeed, if e € E! is an exit for a, then r(e) € Q(v), since E does
not satisfy Condition (K). Thus C*(E \ €(v)) contains an ideal that is not invariant
under the gauge action, by Lemma 2.1. Therefore C*(E) contains such an ideal as
well. O

TaeoreM 2.3. I E is a directed graph, then the following conditions are equivalent.

(a) Every nonzero hereditary C*-subalgebra in every quotient of C"(E) contains an
infinite projection.

(b) The C*-algebra C*(E) is purely infinite in the sense of Kirchberg—Rordam.

(c) There are no breaking vertices in E, and for each vertex v € E° the projection
P, is properly infinite in C*(E).

(d) There are no breaking vertices in E, all loops in each maximal tail M have exits
in M, and each vertex in each maximal tail M connects to a loop in M.

(¢) There are no breaking vertices in E, the graph E satisfies Condition (K), and
each vertex in each maximal tail M connects to a loop in M.

Proof. (a)=>(b). This is [16, Proposition 4.7].
(b) = (c). If C*(E) is purely infinite, then each projection P, is properly infinite,
by [16, Theorem 4.16). If v € E° is a breaking vertex, then v € Q(v)fir. We have

C*(E)/Japyawpm\p = C*((E/Q@®)) \ BQv)E\ {v})),

and B(v) is a sink in the graph (E/Q(v)) \ B(Q(v)i \ {v}). Thus, the corresponding
projection P, — P,qq) (see [1, Proposition 3.4]) in C*(E)/Ja)aum\({»} generates an
ideal isomorphic with the compacts, contradicting [16, Proposition 4.3].

(c) = (d). Since there are no breaking vertices in E, for each maximal tail M we
have Q(M)fi* = &, and hence C*(E)/Iqum) = C*(M), by [1, Proposition 3.4].

Suppose that M is a maximal tail in E, and that « is a loop without exits in M.
Then the ideal of C*(M) generated by Py is Morita equivalent to M,(C) ® C(T)
(see [18]). Thus Py, is not properly infinite in C*(E)/Igm), and hence it is not
properly infinite in C*(E) either, a contradiction.

Suppose that M is a maximal tail in E, that v € M, and that there is no path from
v to a loop in M. Let H be the set of those vertices w € M such that there exists
a path from v to w. Then H is a hereditary subset of M containing v, and H does
not contain any loop. The ideal I, of C*(M) generated by P, is Morita-equivalent
to C*(H) (see [18]) and hence it is an AF-algebra since H has no loops (see {18,
Theorem 2.4] and [20, Remark 5.4]). Thus the projection P, is not properly infinite
in C*(E)/Iqu), and hence it is not properly infinite in C*(E) either, a contradiction.

(d) = (e). This follows from Lemma 2.2.

(e) = (a). Every ideal of C*(E) is gauge-invariant by Lemma 2.2, and hence
it has the form Jgp for some saturated hereditary K < E° and B < Kf" by
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[1, Theorem 3.6]. We may assume that K # E°, for otherwise Jx p = C*(E). Since
BV(E) = @, we have Kfi" = @& as well. Thus Jx g = Ix and the quotient C*(E)/Ix
is canonically isomorphic with C*(E \ K), by [1, Proposition 3.4].

We claim that in the graph E \ K: (i) each loop has an exit, and (i1) each vertex
connects to a loop. Indeed, let a be a loop in E \ K. Then, by Condition (K), there is
a loop p in E with s(u) = s(«) such that neither o nor p is an initial subpath of the
other. Since K is hereditary, all vertices of u must lie in E°\ K, and hence u gives
rise to an exit in E \ K for a. This proves claim (i). Let v € E%\ K. There exists a
primitive ideal J of C*(E \ K) such that P, ¢ J. Since BV(E) = @, it follows from
[1, Theorem 4.7] that there exists a maximal tail M in E \ K such that v € M.
Clearly, M is also a maximal tail in E. Thus, by hypothesis, there exists a path from
v to a loop in M. This proves claim (i1).

It now follows from [7, Corollary 2.14] that each non-zero hereditary C*-
subalgebra of C*(E \ K) contains an infinite projection. ]

Recall that, by definition, a unital C*-algebra A has real rank zero (denoted
RR(A) = 0) if and only if invertible self-adjoint elements of 4 are dense in the set
of all self-adjoint elements of A4; see [3]. The real rank of a non-unital algebra A
is by definition the real rank of the minimal unitization of 4. By (3, Theorem 2.6],
RR(A4) = 0 if and only if the self-adjoint elements of 4 with finite spectra are dense
in the set of all self-adjoint elements of 4. In [14, Theorem 4.1], Jeong and Park
proved that for a locally finite graph E, Condition (K) is equivalent to saying that
RR(C*(E)) = 0. The same fact remains true for arbitrary graphs, as Theorem 2.5
shows. (A different proof of this result is given in [13].) To prove the theorem we
need the following lemma, which is of independent interest.

LeMMA 2.4. Let E be a directed graph satisfying Condition (K). Then there exists
an increasing sequence of C*-subalgebras A, of C*(E) such that the closure of the
union of all A, equals C*(E), and there exists a sequence of finite graphs F, satisfying
Condition (K) such that for each n, the C*-algebras A, and C*(F,) are isomorphic.

Proof. At first we associate with each vertex u € E® a subgraph G(u) of E, as
follows. If there is no loop in E passing through u, then G(u) consists of the single
vertex u and no edges. Otherwise, since E satisfies Condition (K), there exist two
loops & and g such that s(«x) = s(u) = u and neither a nor y is an initial subpath of
the other. Then the subgraph G(u) of E consists of all the vertices and all the edges
of two such loops.

Now we enumerate the vertices E® = {v, : n = 1,2,...} and the edges E! =
{e, :n=1,2,...} of E, and we construct by induction a sequence of subgraphs F,,
n=0,1,..., of E, as follows. Fy is defined as the empty graph. Suppose that the
graph F,_; has already been defined. We define F, as the union of F, 1, the edge
en, and all G(u) with u € F® , U{v,, s(ex), r(es)}. This definition implies that for each
vertex w in F, there exists a vertex u such that w € G(u) and G(u) is a subgraph of
F,. Therefore, if there is a loop in E passing through w, then there are at least two
such loops in F,. Consequently, each graph F, satisfies Condition (K).

We define A, as the C*-subalgebra of C*(E) generated by the projections {P, :
v € F0) and the partial isometries {S. : e € Fl}. Then 4, is isomorphic to a C*-
algebra of a finite graph (see [20, Definition 1.1, Lemma 1.2 and Remark 5.1]), and
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the analysis of the construction in [20] shows that graph satisfies Condition (K).
However, for the sake of completeness, we give another proof of this fact. Indeed,
let V, be the set of those vertices v of F, that emit at least one edge in F, and for
which there exists an edge in E with source at v that does not belong to F,.. We
define F, as the graph F, enlarged by extra vertices {7 : v € V,} and extra edges
{e :e € F!, r(e) € V,}, with the source and the range functions of F, extended by
s(e) = s(e) and r(e) = r(e), respectively. Since F, satisfies Condition (K) and all the
additional vertices {T : v € V.} of F, are sinks, it follows that F, satisfies Condition
(K) as well. It remains to prove that the C*-algebras A, and C*(F,) are isomorphic.
Indeed, let {Q, :v € FO}, {Qs :v € Vo}, {Te :e € F1} and {T; : e € F}, r(e) € V)
be the generators of C*(F,). The map

bs if v is a sink in F,,
e {Zfei"lvs(f)=v SyS;, otherwise,
O Po— 3 StS),
feF, s(fy=v
T, {Se’ if r(e) i§ a sink in F,
Se D fek s(fy=rie) SrSf» otherwise,

Ty S. (P,(e)-— W S,s;),

feFL,s(f)=r(e)

extends to a C*-algebra homomorphism from C*(Fy) to A, since the target elements
satisfy relations (GA1)~(GAS) for the graph F,. This homomorphism is subjective,
since the range contains the generators {P, : v € FO} and {S. : e € F1} of 4, Tt
is also injective, by the Cuntz—Krieger uniqueness theorem [2, Theorem 3.1], since
Condition (K) implies that every loop in the graph F, has an exit. Thus A, = C*(Fy),
and the lemma is proved. O

TuroreM 2.5. If E is a directed graph, then C*(E) satisfies Condition (K) if and
only if the real rank of C*(E) is zero.

Proof. Suppose that E does not satisfy Condition (K). Then, as in the proof of
the implication (c) = (a) of Lemma 2.2, we see that a quotient of C*(E) contains an
ideal that is Morita equivalent to C(T). Thus RR(C"(E)) # 0 by [3, Theorem 3.14
and Proposition 1.1].

Conversely, suppose that E satisfies Condition (K). Let 4, be a sequence of
C*-subalgebras of C*(E), as in Lemma 2.4. Then C*(E) is the inductive limit limA,,
and each A4, has real rank zero by [14, Theorem 4.1]. Thus C*(E) has real rank zero,
by [3, Proposition 3.1]. O

Since all graph algebras are both separable (because E is a countable graph) and
nuclear (see [20, Remark 4.3]), Theorems 2.3 and 2.5 and [17, Corollary 9.4] imply
that the following corollary holds.

COROLLARY 2.6. Let E be a directed graph. If C*(E) is purely infinite in the sense
of Kirchberg—Rordam, then RR(C*(E)) = 0; moreover, C*(E) and C*(E) ® O, are
isomorphic as C*-algebras.
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