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1. Preliminary

In the present paper, we would study the topological structure for the polytope which
has become a generic term used to denote those subsets of a Euclidean space, such as po-
lygons or polyhedra which are constructed with rectilinear elements.

Above all things, we introduce that some examples have been spaces which are home-
omorphic to some polytope and refer here to such things as geometric complexes, star to-

pologies, barycentric subdivision and the basic . geometry of polytepe. And then we are
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going to study simplicial mappings

2. Geometric complex and polytopes

Definition. 2.1. A set {ay, @y, -+, a;} of vector in E" is pointwise independent pr-
ovided that the vectors ay—a,, @—a, -, @—a, are linealy independent. Here, (v, vs,

-y s} (C vector space, k: finite) is linearly independent iffé f;v;=0, f; € Field=f;
Definition. 2.2. Let A={ao, ai, -, &} be a set of k+1 pointwise independent
point in E*. And we denote by {hEH"Ih:Z’f fia;, fo,:l, f:20, a;,eA}.
i=0 iZ0
Then we define S, by geometric k—simplex in E* determined by A.
{Example. 2.1°) (1) S, : a set of only one point, {a@,}
(2) S;: a closed line segment, g,—a;.
(3) S;: a closed triangular plane region.
(4) S;: a closed solid tetrahedron, so on.
Definition. 2.3. H*(CE" is k-dimensional hyperplane iff there exists @, {a;, @,
k
.-, a,} of E* such that H‘b={h|h=ao-{—'§]1 tia;, t;=EY. As it were, if ¢;=7=(0,0, -, 0),

then H* is k—dimensional vector subspace of E".
And so HI\CE?, then H'={(x, 0)|x=E"} is cne dimensional hyperplane for E-.

We denote open geometric 2—simplex in E* (determined by A4) by S,——-{heH“lh:):If fia;,
i=0
% fi=l, £i29 a,cA).
iZ0

Lemma. 2.4. Let A={a,, a,, -, a,} (k <n, ACE") be pointwise independent.
Then there exists unique #—dimmensional hyperplane such that
(1) AcCH*

@) heH'Sh=ar+ 3, g+ (a—a0) (h#T=>g; : unique)

Proof : (1) Let H* be{hlh=a,+ z_”lg,.(a,._a@, g: € EY.
Then (i) H* is k—dimensional hyperplane by Definition 2.3.
(ii) Jve;e4, aj=ao+§h1 8;; (aj—ay,) where 8;; is Kronecker delta. Hence a; belongs to

H* for all j.
Thus ACH".
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(2){/z-ao[h—a(,:z’fg,-(a,»—ao), he H'} is k—dimensional subspace of E* with basis {a;,—
(=51

). Hence g, is unique for 2 (#0). And then we must claim the uniqueness of H".

Suppose that we have the other #—dimensional hyperplane F* such that
(1) ACF?

)] V/)El“’“:}j)za‘)+2§i gia;,—ay) (If p#0>g, : unique). Then there exist B={by, by,
iZ1
k
.., by} and b, such that {by, by, ---, by} is linearly independent and F":{p]p:bo—}—z‘._lf,- b}

E
Since ACF*, there exists f,;(€EY) such that @,=b,+X fub, (G=0,1,2,--,k) for
i—1
every dj.
E k
PUtting @y=bo+Y, fi0 b, We gain ai—ay=2 (fii—fi) * bi
i1 =1
Since both B=1{by, by -, by} and {@i—a,) (j=1, 2, --- k) are linearly independent,
there exists unque b,-:Zk] giX(ai—ag)(i==1, 2, .-, k) and so,
=1
k k
p=bo+3, /i (Z, gus@—ap) ) belongs to H*
i-1 =1 /
Hence F*cH*, similarly H'CF*. Thus F'=H".
Lemma. 2.5. Let {pop1 -~ P> be the geometric k—simplex determined by a set A=

1pos D1, =y Dx) of k-+1 pointwise independent points of E".
Then {popr -+ pxy is the convex hull of the set A.

Proof : To show that {pep; --- s> is convex, let i)x; p; and i}y,— p; belong to {popy -+

k k k k &
5> where 3 ;=1 and »y,=1.we would show that T tx;p; +25 (1—=0Dy; pi=2 {(tx+
(=] iZ0 iZ0 i=0 iZ0

(1—=0)y;1p; belongs to {pe-psy. But éo{(lx.’F(] —t) y)}=t i‘:)x.'—F(l“l‘) }f_})y,-zt-i-(l*—t):l.

Hence iZ:,O(M,“*—(l—If))’i)X/)i belongs to {po - ps>-

And then we verify that {pepi---ps) is convex hull. Now, let B be a convex set cont-
aining A and é x;p; belong to {popr-pr

To show éx, p.eB <é0 x,=1), by induction,
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1**~step ; Suppose A=0=>{pe>=1{po}=A. ACB. Hence =B
2"-step ; Suppose that it is true for #—1 the same as the above assumption.

3-step ; Let x:.=éox.- b; be a point in {po--pe.
* k-1 k-1 A1
Then if x,=0= 3 xp=F, xipitaspu=F % b, that is, Tx, p,=B by 2-step. And then

if %0, _:Z:xi pi=:z::—:xipi+xkpi

Sbt ape=(— )P xipe

k=1
:(1 —xle) i§) 1

Sox ottty -z 1-x,
But then, E}o 7 = T =1

=1"and since

hz_]l#pi belongs to B. Hence Zk} %:p; belongs to B. Thus B is the convex hull.
iZo

= 1—x,

So to speak, we obtain that for a given subset 4 of E*, the convex hull of 4 is the
intersection of all convex subsets containing A. And so the convex hull of any subset
A of E" is convex. :

From now on, we introduce some notations and examples. we represent that two geo
metric simplexes, S” and S”, m<n, are properly joined, if either
1) s*Ns"=¢ or
2) s"Ns"=s*(k<n)
where s* is a subsimplex of both s™ and 5*. And we denote a geometric #—simplex s
by

§"={Po P+ p™>
we call {pjo---pir) to be k—face of s* and then geometric complex K is expressed by a
(countable) collection of faces of geometric simples properly joined such that for all s
€K, every s* is a face of s* and belongs to K.

(Example 2.2.°> {py-p;--p,> is a face of {bob1* sy, which is obtained by deleting
only pj. As it were, in simplex $2={po p1 b2, we have {p, py D2>={bopsy which is a face
of {po 102> as the following figure 1.

P2 P2

P4

Po P Po P

fig. 1. fig. 2.

(Example 2.3.°) Let s* be {Pop1p>. Then K={<{p>, <{pvy (P bobr>s <p1b2),
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PePsps {Poprpz)} isthe geometric complex. Suppose that Ko=1{po>, 1)y {popryy {prpa)s
CDb0ds $popipers {psps <{Pidy “Psp} as the above figure 2, then K, is the collection of
simplexes but not geometric complex since {P1p2> N {psp>=Pps is not a face of any sim-
plex properly joined.

Definition 2.4. (1) K is defined the topological geometric complex by a (countable)
collection of properly joined topological geometric simplex such that for all seK, every

s’ is a face of ¢ and belongs to K. And we define a topology for a particular class of
complex.

(2) we define St(e)={ccKio : a face of simplex s} by

the star of a simplex s and so we denote K(star-finite complex) by Veo&kK, St(o) is
finite.

(3) ¥ is a star topology of a star-finite complex K if and only if 7 has a base B such
that.

B={X1XNe, i; finite, o, : simplexes XNeo is open in o, JVocK)

Remark : [KI=USt(c)=U{clc=K, K : star finite complex] is called the geometric
carrier of the complex K. And let (Ufslo€K], ¥) be a topological space and if the
open star of a simplex o (€K) is denote by St(s) such that St(a)=the interior of carr-
ier of St(e), that is, the collection of the open subset of |K|.

(Example 2.4.7>  Let K={{po), <p1), {psyy {bopr)s <brbsds {Dapod, {popr1p2>} be star
finite complex of S2.

Then St(p0)={<ba), <bobsd, {pobsds {popips)) and each element of St(po) is carrier
and we suppose that topology for each element, we
gain topological space ({(po>, F<{po>) which is carrier.

(Example 2.5°) In the adjacent figure 3. St(s)=
Ky—{Us}
but

St(s) = {{vwe, {vis), {10903 }.

But we could obtain St(¢)=St(¢s) as the following

example,

(Example2.6°) In the adjacent figure 4, (that is,
in topological space(1 K| Y x1),
St({psy) is the interior of the carrier of St({pD)

= { {Doprpads {D1ps) | ,1i.e.,
Piboys <Prpy )

St i) =St pi)

3. Barycentric Subdivsion

Now we introduce a standard technique used for
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producing a triangulation of a given polytope such that the new triangulation is finer
then the original. This subdivision is presented first for a complex consisting of a sin-
gle simplex s"={(pops---p.> together with all of its faces. Such a comlex is called - the
closure of a simplex and denote by Cl(s").

Definition 3.1. cl(s™)={s|s : face of s"={pop1-pwp} is called the closure of a sim-
plex s*. And A={po, p1,---D»} are assumed to be pointwise independent and that

Sy={(hlh= Zo XiDis >:0 xi=1, %, 20}=Cpoprbw>

is a geometric #—simplex and S,CE".

The collection of all points $*, %.=0, 1, 2, ,n, where o, is the number of K—simp-
lexes in cl(s”), will be the vertices of a new complex K, the first barycentric subdiv-
ision of K=Cl(s"). Now returning to the vertices 5;*, we will take a subset of this po-
ints to be vertices of a simplex in K1, ($i$p 5., iff §:<5<--<s; in K.

Lemma 3.2. If {5#:%,=0,1,2,--,m, j=1,2,---o4}, where a, is the number of k—
simpex in CI(s"), is the vertices of a new complex K, then the number of face for K!
is 2"1—1,

Proof : 5° 5% +-+y S$p41® 3 441Ci
1

S17y 3219 Ty 3n+11 5 n+1C2

S'a1 3 ar1Catt

Thus .41 Citet1 Cot Fapr Copr=2"11=1

Remark ; The point §* is called the barycenter of the simplex s” and in the centroid
of the vertices p; with epual weights assigned to each, i,e., let $*={pio---Duy be

a face s"={pop1+bny, then s’*;_io;x,-pi,-, iox,:l and

xo=-~=x,-=?iT weight (j=1, 2,--:, k).

2

(Example 3.1°) Let s? be {poprpsy. Then 52:-‘):‘:)

Zibiy ia}:jole, and x,=x,=x, like ,,”P‘:Sql =
as the adjacent figure 5. /
And so, KI S3
K={s¢% s1° $:% $i%, S5, S5, S2%} |
={{poys {podr>s {P1>s {LrP2)s
P2y {Dapods <PobrD} \to=5:

K1={<8" $it §%) <810 5°

§8y - (505 - (50}
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where K' is the 1% barycentric subdivision of K.
As in the abcve fig. 5., this subdivision may ncw be done for esch simplex of any

geometric complex K and define a now complex K@, the first barycentric subdivision
of K.
It is evident that the geometric carrier of K and K! are identical.

Now we define the mesh of a geometric complex K by sup{did: the diameter of
every simplex of K|

Lemma 3.2. Let s* be a geometric %—simplex.
g

Then d(s") is equal to the length of its longest edge (or 1—face).

Proof : Suppose A={popy---ps}, the set of all vertices of s'. Sk——-<Po/?1"'/7»>'»“—‘ET1 B;, wh-

ere B; contains A4, is convexhull of A by Lemma 2.5. d(s)=d(A)= d(a, b) where
@, b are endpoint respectively of 1-—face since (1(.4)#0’(["} B,) (AcB;, 7).
izl

Thus d(A) is equal to 1—face of the simplex

Theorem3. 3. Let K be a geometric complex, finite dimension, » and finite mesh.
4 and let m be the mesh of its 1 barycentric subdivision K.

A

Then m (K\)< Wil A

Proof : Let an arbitrary s* belong to K, s*=<p,;, pud. Then the barycenter §* of s*

equals to 7};%1"‘<pj1+"'+pjk), where—k—ér is the barycentric coordinates of §* since

b

S=L fot ot fi=l from fom =/, thus fi= iy

Now then, let (5%*» be an arbitrary 1—simplex of K! in the subdivision of s* and
s’ be a face of s* in K as si(s*

Put p=the length of (s'§*). If s'is {po--p> then s 1=(p, - P> and if § &1 is
the line segment from §* to $*~i-1, thend§ st~y D,
And so,

the weight of the barycenter §i= ?#1\[1)0‘%.”4—/)‘]:7’/{3—#—11’

while s*~'~! has weight _zill as centroids of the vertices, since $*~*"! has [(k~i—1)+1]

. . . . 1 .
of the vertices and its weight 1s-—k—+—1--»><(/\»~ 0.
In the result, ‘ék:";‘j_?lf St 2:3 §hmim1

1
T 1 (Dot +11ds
where & is the centroid of these two perticles as the below figure6.
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fig. 6.
Putting the length of line segment from § to s¢-i-!
by ! (§ s*i1)=p, then we obtain
i1 N ki
( ) >"* < EF1 >(P"‘)
or i+1 b—1i

k+1+k+l =7¥1 ~ “"”‘*k+1"

A

. . k—i k
k t—1_ k.
since p does not exceed the diameter of s*, we conclude that s < | A= I 2

n
n+1 2
n
thus m( ST
Corollary 3.3. If K™ is the A*-barycentric subdivision of K, K is n—dimensio-

nal geometric complex and the mesh of K is 2 (<00), then m (K®) converges to zero
as k—oo,

4’. Simplicial mappings

. Definition 4.1. Let |K} and |L| be polytopes with triangulations K and L respec-
tively.
Putting K,={p;|p, : vertex of K} and
L,={o;|o; : vertex of LJ}.
we define transformation f from K, into L.(f: a possibly many-to-one), satisfying co-
nditions that if {p¢---p,> is a simplex of K, then f(po)---f(p,)
(not necessarily distinct) are the vertices of a simplex of L and that the function f is

a continuous extension if and only if f(x)=f (i:‘,o x; p;) =i}ox,~f (p) such that x=i}0x,-p,,

i’,ox.-:l, 2;20 if s"={py---pay is a simplex of K and xes".
The above mapping f is called a simplicial mapping.

Lamma 4.2. A simplicial mapping f is continuous.
Proof ; Let x belong to |K|. Then there exists the x in s*={pop:---pr> which is belonged
to K, and so,

f(x+Ax)—f(x)=éI°(x.»+Ax,-)f(P;)—-éx;f(Pf)i};oAxf F(b). Hence 20 %, f(p)) conver-
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ges to zero when dx; approaches to zero.
From the above definitiosn 4.1., we note that the mapping / from K, into L,, such
that {py-p.y <K, (py), -, f(p,) are vertices of a simplex of L, is a simplicial mapping.
Lemma 4.3. In a Euclidean space E*, let{p,} and {q,} be two sequences in polytope
) i : -
[K! (£ such that ‘M p=p, 1,,133 q.=q respectively, and let p,q, be the length of (p,,
4.) which is the line segment from p, to ¢, If x, belongs to (., ¢.) for each n, and if

there exists lir,fl d(x,, p.) as n—oo, then there exists a  on [p, ¢) such that

(D l,lm.q d(xs po=d(x, p) and (2) 1,,”?, X,==x.

pl‘OOf 5 Pllt /7’1’:(/7711, 712’ "'pnk)’ 04:<qnls Tty (/nk) and x,,:(x,,‘,~-~, xnk): xr(_xl’ xzi'“’xh)'

Then d(x, /)"):’\/21 (& =p.)% and x,=(1—t) p.-+t.q, (0<t,<1)

1

! we obtain 1}3.3 xn:-%/) +%q:x. i.e., x&[p, q], since x,= (7

1
2 n+l?

Letting t,=

S D lim elimen N e wore
_{_F_pl“/)n ) + ( "2_ - 7Z+1 \/(Ir. ﬂnd K»l};l:l (l(x,,, /)n,) :\/lz“:l . ZLI:](xn,'—/’ﬁ‘)] (1)~Whlle lﬂl*rg x":

/ .

lim lim lim k
nTte (xnla Ty xnk):(xlv x27‘“$ xk/\:-_:x and nrew i n"w(/)x]’ /,”2’ Y !)nk)':(p11 Tty p ):p

The formula 1 becomes \/i (X' —pD? =d(x, p).
iT1

To show the existence of ELT d(x. pa), we verify that there exists t,,:;_— n—:l
Now, assume (x,--p)=t,(q.—p.). d(%, p)=|t.1d(q., p.) approaches to |t,1d(q, p) (n—

00), while x, converges to « as p,, ¢, and ¢, approach to p, ¢ and ¢ respectively.

Hence there exists d(x, p) provided that we take t, by t,—%— 51—1;1
The proof is complete.
Lemma 4.4, 1 vg, 01y, 0y are the vertices of a star finite complex and $t(v,) is

ko,
the open stars of v.(i=0, 1, ---,k), then (- eK if and only if N St@,)#¢.
iZ0

k
Proof : (—) ¥ {ver-- vy K, let =

i

L

k .
xv, 2 x;—1, 2,>0, then there exists 2 St(v,).
0

[

i
<

b
thus 17 St(n,) #.
Ft]

(«=) Let vo, -, v be any vertices, we can represent u,, ---, v, as positive. Hence
{vovy:--v,y forms a simplex of K.
From the above lemmas, we note that if K and L are triangulations of the polytopes

[Ki and [L[ respectively, and if 7 is a continuous mapping of |K| into |L{, then K is
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called star-related to L relative to f. And for every p; of K, there is a vertex v; of L
such that f(St(p)) =St(v;) where p; and v; belong to K, L respetively.

Theorem 4.5. Let both [K| and [L] be finite polytopes with triangulations K and
L respectively, and if f is a continuous mapping of | K| into |Ll|.

If K is star-related to L relative to f, then there exists a mapping S of |K| into |L|
such that

(1) s K—L, simplicial mapping
(2) *x= K|, g¥ieL such that both f(x) and s(x) belong to St(v;).
(3) s: homotopic to f.
Proof ; Assume K,={v|v: vertex of K} and L,={vlv : vertex of L}, For all p; of K,
there is v;(i) of L, such that f(St(p;)) <St(v;(i)). And then we define a correspondence
s between the vertices of K and those of L by setting
s(p)=vi(D).

ko,
Then for all p; of K,, there exists ;(i)=s(p;,) of L and for all {pep1-ps> of K, QOSt

(p) is not empty by Lemma 4.4.
since £ (1 8660 ) 1 £ (3£ ) €11 StCwia) ) =(1 $K(s(p)) is not empty.
i=0 i=Z0 i=0 i=0

Again from Lemma 4.4. {(s(po)---s(ps)) is a simplex of L. Thus s is simplicial, and
by barrycentric extension we obtain a continuous mapping of |K| into |L].
To show that (2) succeed, every point x in | K| lies in the interior of some simplex s*

k k
of K, s* taken to be of minimum dimension, i, e., s*={(popr--pop¥=2 %;p; 2 x; =1,
=] i=0

x;>0.
If p is any vertex of s*, then x lies in St(p). By definition 4.1, f(x) e f(St(p)) St

(s(P) tee. f(x) St(s(p)). But also s(x) lies in St(s(p)), since s(x):Ziox,- S(P),

}i}ox,.=1, and x,> 0.

Thus the mapping satisfies condition (2).

It remains to show that s is homotopic to f. we define 2 by |K|XI'—|L| such that
h(x, 0)=f(x) and h(x, 1)=s(x), for each x of |K|. Let x be a point of s*==(po--ps) in
K. Since s is simplicial, s(po), ---,S(P:) are vertices of a simplex s* in L.

Having that f(x) lies in St(s(p)) for each vector of s*, it follows that f(x) is a

point offjo St(s(p,)), which is precisely the simplex s* of L. Having both f(x) and s(x)

in the same simplex s* of L, we make use of the convexity of s* and join f(x) to
- s(x) by a (unique) line segment in s*.
Properly metrized, this line segment will be the image under a homotopy % of the line
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segment 31! in the homotopy cylinder |K| %1, Letting d(f(x), s(»;)=l,
we write in vector notation,
h(x, H=Q=Df(0)+1s(x)

The continuity of 7 as defined here is a consequence of Lemma 4.3.

5. Conclusion

We have looked at a special class of continuous mappings of one polytope into ano-
ther, namely, those mappings which carry simplexes linearly onto simplexes.

With the aid of Lemma 4.2, 4.3 and 4.4, we have completed the proof of theorem
4.5.

From the present proccess, we see that it is shown the simplicial approximation theo-
rem 75) if we next replace the triangulations K and L by barycentric subdivisions K*
and L*, L* being chosen to yield the desired accuracy of approximation and K* being

chosen so as to be star related to L* relative to /.
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