OPTIMAL ERROR ANALYSIS OF THE
P-VERSION UNDER QUADRATURE RULES
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1. Introduction

Let © be a closed and bounded polygonal domain in RZ?, or a
closed line segment in R! with boundary T, such that there exists an
invertible mapping T : @ — Q with the following correspondence:

(1.1) FeQe—z=T(Z) e,

and

(1.2) TeUyQ) ot =10 T € Uy(Q),

where Q denotes the corresponding reference elements I= [-1,1] and

IxTin R! and R? respectively,

(1.3) UP,(\Q),\ R
= {t : t is a polynomial of degree < p in each variable on Q },
and

(14)  Up(Q) = {t:T=toTeU,(Q)}.

We introduce Sobolev spaces
(1.5) H™?(Q2) = The completion of {u € C™ () : ||u||
equipped with norm

i/p
(1.6) nu||,,,,p,n=( > namu:;,,,,g) i 1<p<oo,

0<ifl<m

17D ulmeon = max 10" u]|v,00,0,

q < oo},

m,p,

where || - || , o is the usual L,(Q)-norm, and the subscript p may be
dropped when p = 2.
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Now we define a space HJ*(?) = {u € H™({?) : uvanishes on I'},
and consider the following model problem of non-constant coefficient
elliptic equations:

Our model problem is to find u € Hj (), such that

(1.8) —div(aVu) = f in QC R?,
d  du ) 1
Here, for sake of simplicity to ensure a solution exists we assume
(1.10) 0<A; <a(z)<A; forall ze€Q,
and '
(1.11) f € Ly(Q).

In addition, we also assume that there exists a constant A such that

(112) |7 1T~ 000 £ A for 0<j <M,

joofl

(113) ”J“],oo,ﬁ ’ ”J—l”j,oo,ﬂ S A fOI’ 0 SJ S M — 11
where J and J~! denote the Jacobians of T and T! respectively,
and M > 1. We note that M must be large enough to ensure that
the domain 2 is not too distorted, i.e., T is smooth. For non-smooth
mappings, (1.12) and (1.13) can still hold, but the constant A may be
very large.

By (1.12) and (1.13), as seen in theorem 4.3.2 of [6], we obtain the
following correspondence:

For any a € [1,00], 0< 8 < M,
(1.14) FTeWhe(Q) —t=1oT"1 e WAH¥(Q)
with norm equivalence
(115)  Cilltllgan < lEllsaa < Colitllpan-
Our problem (1.8)-(1.9) may be approximated by several numerical

methods. In this paper we are interested in the p-version of the fi-
nite element method. The classical form of the finite element method,
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called the h-version, uses piecewise polynomials of a fixed degree p and
decreases the mesh-size h to achieve accuracy. In the p-version, a fixed
mesh is used while the degree p is increased for greater accuracy. The
h—p version is a combination of both. The standard h-version has been
thoroughly investigated. But the p- and h — p versions are recent de-
velopments. A survey of the p -version’s computational and theoretical
characteristics may be found in [3]. Here, when we use the p-version
of the finite element method without subdividing Q the discrete vari-
ational form of (1.8)-(1.9) is to find wu, € S,0(R?) satisfying

(1.16) B(up,vp) = (f,vp)q forall v, € Sp0(R),
where

(1.17) B(u,v) = /Q aVu - Vvdz,

(1.18) (fyv)q =/S;fvd:c,

and

(1.19) Spa() = Up(R) N HI().

In [2] and [8], M. Suri obtained optimal error-estimates

(1200 Ju=upllyq < o u = il o

and

(1.21) lu—uplly o < C’p‘”‘””u“r’(z forall we H{(Q),r>1.

But, the above results follow under the assumption that T is a suffi-
ciently smooth mapping and all integrations in (1.16) are performed ex-
actly. In practice, the integrals in (1.16) are seldom computed exactly.
To compute the integrals in the variational form (1.16) of the discrete
problem we need the numerical quadrature rule scheme. In this paper,
when some numerical quadrature rules are used for calculating the in-
tegrations in the stiffness matrix and the load vector of (1.16) we give
its variational form and derive the estimates of u—1, in the L,(Q2)- and
H'(Q)-norm, where #, is an approximation satisfying (2.5). In [7], the
spectral element method has been introduced and Y. Maday point out
the cases where overintegrations would be required. We also analyze
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the cases in which the overintegration may improve the accuracy of the
approximation to allow for optimal results. In particular, we observe
more general mapping T : Q — Q without subdividing the domain
2. This may have influence on the smoothness of the integrands in the
variational form. Using Gauss-Legendre(G-L) quadrature rules some
numerical experiments confirm the results.

2. Preliminaries

We consider numerical quadrature rules I; defined on the reference
element 2 by
n(k)

A =N afEh~ | F(z)dz
(21) W(p = 3 ot fieh /ﬁf( )dz,

where k is a positive integer. Let Gp = {I} be afamily of quadrature

rules Iy with respect to U. p(ﬁ), p=1,2,3,-:-, satisfying the following
properties: For each I € G,,

(K1) @* >0 and zFeQ for i=1,---,n(k).
(K2) L(f ) <Cllflog forall feUy().

~ 2 ~2 ~ ~ o~
(K3) Collfllog < Ik(f ) forall feUy(9),

where (@) = (oL : e U,(@)} C U (M)

(K4) Ii(f) = [ f(@)dZ forall fe€ Uau(Q),
where d(k) > d(p) > 0.
We also get a family Gp o = {Ir,o} of numerical quadrature rules with
respect to U,(§2), which are defined on by

n(k) n(k) _

(22) Ira(f) = Y whf(al) = Y @fTEN(f o T)(E) = I(JT ).

=1

Now, we denote by DF the n x n Jacobian matrix of F': R — R",
and define two discrete inner products

(2.3) (u,v); 9 = Iia(uwv) on Q,
(2.4) (@,9),5 = L(@%) on Q.
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Then, using quadrature rules I, and I; in G, we obtain the follow-
ing actual problem of (1.16): To find u, € S, (), such that

(2.5) Bu,a(Up,vp) = (f,vp)1q forall v, € 5p0(9),
where

~ LA BN 35,, 9vp
(26) Bm,Q(upsvp) = E (aa"J a_,’i' ’ a:’r‘J ) ﬁ,

ij=1

(2.7) (f, Up)z,n = (ff, 51:):,5 J

A —— —
and @;; denote the entries of the matrix J(DT~!)(DT™?) .
The following Lemmas will be used later

LEMMA 2.1. For each integer | > 0, there exists a sequence of pro-
jections
I, : H(Q) - Up(Q), p=1,2,3,---, such that

(2.8) T3, = 5, forall B, € Up(Q),
(2.9) |[@-Ta|| 5 <Cp~C-9all, 5 forall @€ H"(Q)
with 0<s<I<r.

Proof. See [8,Lemma3.1].

LEMMA 2.2. There exists a sequence of projections
P} : Hy(Q) = Sp0(R), p=1,2,8,---,  such that

(2.10) llu — PI}u”s,Q < C'p'("")”u”r’Q for all u € H§(Q)
with 0<s<1<r.
Proof. See [8,Theorem4.2].

LEMMA 2.3. For Q C R™, let @€ H’(ﬁ) with s > n. Then the
projection II7 from Lemma 2.1 .atisfies

(211)  |@-Ta),, 5 <CptPlal,q.

Proof. By interpolation results ( see [5, Theorem 3.2 ] and [ 4,
Theorem 6.2.4 | ) we have that
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1 R !
(212) @~ T3l 6 < Cla-T3ald, o0 - T5alL_ g
for 0<e< %
We also have from Lemma 2.1 that
(2.13) lu -3l 5 < Cp~C=al,g for 0<r<n<s.

Hence, taking with r=5+4+¢ and r=%—¢ In (2.13) we obtain
~ ~ 1 ~ ~ i —(g—2 ~

e — H;‘u“;ﬂ’ﬁﬂu - H;uH’%_e’ﬁ < Cp~ 9|z

which completes the proof from (2.12).

”,g,ﬁ’

3. Error estimates under numerical quadrature rules and
mappings

First we shall estimate |ju — Up||; o which depends on several sep-
arate terms. The first dependence is on the error ||u — upl|; o With
respect to the mapping T. Next, the error will depend upon the
smoothness of @, @;; and f with the Jacobian J of T.

LEMMA 3.1. Let u be the exact solution of (1.8)-(1.9) and u, an
approximation of u which satisfies (2.5). Then there exists a constant
C independent of m, | such that

3.1 —-u <C inf u—
(1) Nu=Tplg < Ol inf  (Iu=uslig
+ sup IB(up’wp) - Bm,Q(up’wP)l }
wp€Sp,0(R) ||“{p”1,n
I(fv wl’)ﬂ - (f, wP)I,QI
+ sup J-
wy €Syp,0(R) ”wPHI,Q

Proof. 1t is similar to the technique in [6, Theorem 4.1.1 ].

In Lemma 3.1, the third factor that ||u —u,||, , depends upon is

the smoothness of f and J with the mapping T. In this connec-
tion, we shall use the following Lemma.
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LEMMA 3.2. Let I; € G, be a quadrature rule on {} C R™ which

satisfies d(l)—p—1>0,andlet fe HY(Q) and Je€ HYQ) with
min(vy,8) > n. Then, for any wp, € Sp0(2) we have the following
estimate

|(f7 wp)g - (fa wp)z,ni
”wp“l,a
< C{ q-ﬁ-%)nflu,n( 17Nl o0, + 11150
+(d(l)—p—q)” 5“>||Jnm (1 fllo.com + Il 5) 1.

(3.2)

where ¢ is a positive integer with d(I)—p—¢ >0 and C is inde-
pendent of l,p and q.

Proof. Since d(I) —p —1 > 0 there exists a positive integer ¢
such that d(I) —p—¢ > 0. For arbitrary Wy € Ugty—p—g(f2) and
Wy € Uq(Q) we let @ = W, wg € Uyuy- p(Q) Then, due to (K4) it
follows that

(3.3) (0, ), 5 — (W, Wp)g =0.

b

Since (f,wp)g = (Jf,wp)g and (f,wp) \, (ff, @p)l,ﬁ

(3.4) | (£, wp)n (f, wp)zgl .
< I(Jf’wp) — (o, wp)n| + | (w, wp)[ -(J f, {U\p)zyﬁ |

By the Schwarz inequality we obtain

(35)  1(Tf,@)g - (@ Dp)g|
S N f = T2, Wp)g | + | (J @z — D182, D)y |
< | (Af W )”o 9) ”wp”o gt “(J wl)w2”o 9) ”wp“o )
< (W lo g I1f = Bally o + 17 = Billg 0.5 1B2llg 5 MBpllo 5 -

Taking w; = Hz(l)_p_q(f) and W, = H;‘(f) in Lemma 2.3 we
have

(3.6) If = B2llg o < Ca™"Plfll,

and
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(3.7) 1T = @illgg < CdD)—p—a) " T],;5 -

Moreover, by the triangle inequality and from Lemma 2.1

(3.8) IB2lloq < 1fllog+I1F = B2llyg
< c{lfll,a+a"Ifl,a}
< Clifil,g »

and obviously

(3.9) 1Tllos < ClTllsa -

Hence, by substituting the above results in (3.5) we have

(3.10) | (J f,@p)g — (B, Bp)g | lo. - R
< C{r D +(dD)-p—a) YA & 1750 1pllo 5 -

Similarly, we can estimate the last term of the right side in (3.4), which
can be rewritten as

(3.11)  |(J f,@p)1 5 — (B, Dp); 5
< l(Jfa'&’\p)z,ﬁ _(J'ﬁ% @p)l,ﬁ | + HJG?,GP)I,Q - (131'&32,{5,,),,5 |
= [(J(f = D2), Bp); g | + [(W2J — @1), D), 51

Using the Schwarz inequality, we have from (3.6) and (K2) that
(312) | (F(F = 82), By 5] < (FF = B2), I(F - 021 (8, 99

< ClJllo,00,8 I f — D2llg, 00 1@5lo
< Ca T D|fll, 6 11l 008 1Pallo g -

Moreover, from (3.6) and (3.7) we also obtain
(313) (@] — @1), Bp)y 5
-~ -~ 1 1
= ({‘32('] - '{51),{52(*] - {51))12,5 (ﬁmﬁp),zﬁ

<
< ClIJ = B1lly, 00, 192l 00,8 1@5lo &
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< CIT = B1llg ooz IFllg oo + 1F = @2llg o0 0) 155l 5
< LD =p= ) DY Tlsa 1l (A
+(d() ~p~ )" TE D |1 Tl 5 171, 5 155lly 5 )-

Hence, combining (3.12) and (3.13) we estimate

(3.14)  |(Jf,@p),5 — (,%p), 5 |
< CLe DTl 00 171 4
+(d(l) - p— q)‘“‘”lun& & 1l
+q D) - p— )~ 2 1,2 11,8 HI@pllo 5 -

Since the last term of the right side in (3.14) is dominated by the
terms in (3.10) we derive

(3~15) '(fa wp)Q (f7 wp)lQ I
< C{q-(v-->|lf||m<||Jno wat lsg)
+(d() - p—q)” “"f’nJum (NNl 00,8 + N111,5 }HIllo 5 -

It is obvious from (1.15) that
(316)  [@pllos < CllBll, 5 < Cllwpll, g -

The Lemma follows from dividing with lwpll, o -

Now, we give the following Lemma which can be used for estimating
the rmddle term in (3.1).

LEMMA 3.3. Let u,,, W, €U (Q) and fe€ LOO(Q) Then, for all
vqu(Q),f,EU(Q) with 0<q¢<p and r=dm)—p—q>0

we have

(3 17) I(fup,wp) (fupawp)m Xe I
< c{lfl, oo lBs = Bgllo g + I1F = Fll, 00,8 l@pllo g HI@pllg 5

where C is independent of p, ¢ and m.

Proof. For any f, € Ur(ﬁ) we have
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(3.18) l (f ap’{‘;p)ﬁ - (f 1,Ipv@p)m,ﬁ ‘
< |(f amﬁp)ﬁ - (frap’{ﬁp)ﬁl + I(frap’{‘;p)ﬁ - (frap’ﬁp)m,ﬁ |

+ 1 (frlp, Wp)m g — (f @y, 'ﬁp)m,ﬁ K
Thank to (K4),
(3.19)  (Fog @p)g — (frg,Bp)ng = 0 forany By € Uy(R).
Hence,

(3.20) | (Frilp, @p)g — (Frllp, @p) s |

< |(frapa{‘7p)ﬁ - (frﬁq, ﬁ;p)ﬁ l + I(fraq’wp)m,ﬁ - (frap’ﬁp)m,ﬁ |

By the Schwarz inequality we obtain

(3-21) | (frapa 'L";p)ﬁ N (frﬁq, ﬂ31))(’5 I
~ ~ L 1
S (fr(up = vq)v ff‘(up B vq))é (wP’wP)é
< Clfello,ooall@s = Vallo g 1@plloa -

Also, from (K2) we have

(322) | (fraq,lﬁp)m,ﬁ - (ff'apaﬁ;}))m,ﬁ |
~ ~ 1 1
< (fr(up — Vg), fr(dp — ”q)):n,ﬁ(wpa wp):nﬁ

~ F R !
Cllfrll,co,a(tip — Vg, Up — v?):n,ﬁ(wp’wl’);’ﬁ

< Clifrllo,0,allTp = Dallo,all@plloq -

IN

Hence, combining (3.21) and (3.22) we estimate

(3.23) | (Friip, @p)g — (Frilps@p)pm g |

< Cllfello co,allip — Dallo all@pllo g -
Similarly, since f € Loo(ﬁ) we obtain

(3.24) |(f"7p,@p)ﬁ - (frapa@p)m
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< ((f- fr)“pa(f - fr)“p)é (wp,wp)é
< Clf = Frllg.o,allEpllo all@pllo g
|(fritp, Wp), g — (f Upy Wp),, g
~ U NN S !
< ((fr = Hup, (fr — f)up);,ﬁ(ww wp);’ﬁ
~ T 1
< Clfr— f”o,oo,ﬁ(up’up);,ﬁ(wmwp);,ﬁ

< Clifr = fllo,ooallEpllo ali@slleq -

The Lemma follows from (3.23), (3.24), (3.25) and (3.18).

For any f € H'(ﬁ) with @ C R® and r>n we denote

(3.26)

Ko(f) = 112 fllg oo -

Then, we easily see from Lemma 2.1 that

(3.27) EJ(H) < C{Iflg g+ 20,4}
<C {Ifllp.oa + 11,5}

Let us define

(3.28) My, = max @il 0.8 »

where the subscript ¢ will be omitted when ¢ =2.

LEMMA 3.4. Let I, € G, be a quadrature rule defined on Qc
R", which satisfies d(m)—p—1>0. Let @€ H°(Q),a e H*(Q),
Je H‘S(ﬁ) and @;; € H”(ﬁ) for i,7 = 1,---,n, such that k =
min(a, p) > n. Then, for any w, € S,0(?) and an approximation
up which satisfies (1.16) we have

(329) I B(UP’ wp) - Bm,Q(u}H wp) I

”wplll,n
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< C{g Vi, g+ r~* D@, s M, 1Tl 5},
where q is a positive integer such that 0 < ¢<p and r =d(m)—
p—q>0.
Proof. For arbitrary w, € S, 0(f2) we have

(330) I B(up’wp) - Bm,Q(um wp) '

ou, O i, Ob
¢ mﬁxl(““" A 69:,) ( Yoz a§j>

For any @;;¢,j=1,---,n welet ¢ beany integer such that 0 <
¢g<p and r= d(m) p— g > 0. Then, since a@a;; € Loo(Q) due
to Lemma 3.3 with o, = ;2 (I'I1 ») and fr= II7}(aa;;), we have

.. Oy OWp an Oy 3w,,>
(3.31) | (aa,, T 55, )g - (aa,] 6'\ , 8:6] ﬁl

< CUMR@a:5)llg,00,0 Il 5" %y —%( qup)lloA

au,, 6wp

+||@a;; — H?(aaij)llo,oo,ﬁ“ 0%: ” } 155, oz ; -
t 0,0 i 0,8

Using Lemma 2.1 we easily see from the boundedness of H; that

ou -~
(632 132 -z Mmal
0,0
< Cllu, - Hun“ < Cq (o= 1)”“”
Also, clearly
Ju ~
(3.33) = < Clill, 5 < Clill, g,
6.’17, 0,
and
ow ~
(3.34) 5 =l < Cldpll,q -
oz; 0,0

Moreover, since @d;; € H*(Q) with k = min(a,p) > n we obtain
from Lemma 2.3 that
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(3.35)  |[@di; - I2(@ai)llg 005 < Cr~* Dl aM, .

So, from (3.32)-(3.35) and since |[II}(@@ij)lly ., 5 is bounded, we
have

ou, Ow ou, Ow
3.36 da;; ==, =L — |a@a;; =L, =2
336 x| (av, 32 32 ) - (am 52 32 |

< C{a VY@l g+ DIl g Mol 5 ol g -

Since ||yl < Clli@pll; g < Cllwpll, o» the Lemma follows from
dividing by |[w,l, ¢ -

By a direct application of (1.21) and Lemma 3.2, 3.4 to Lemma 3.1
we obtain the following Theorem which gives an asymptotic H'()-
norm estimate for the rate of convergence with using numerical quad-
rature rules and the mapping T : Q- Qc R

THEOREM 3.5. For any numerical quadrature rules In,, I; € G,
and for any mapping T :  — § C R® which satisfies (1.12)-(1.13),
we assume that @ € H°(Q),a € H*(Q), J € H (D), fe H'(Q) and
a;; € H"(ﬁ) for each i,j =1,-+- ,n with min(a,~,$,p) > n. Then,
for any positive integers ¢i,q2 such that 0< ¢ <d(l)—p—1 and
0 < ¢1 < min(d(m) — p—1, p), we have

(3.37)  |lu—ipll, o < C{a~ V||, g
+rr 5 )E), 8 M, Nl 5
+ a2~ DAL 5 1T 00 + 11l50)

+r2 7D TN 5 W Fllo o + 171, 8) 3
where k =min(a,p), s =d(l)—p—¢2 and ry =d(m)—p—q:.

We see from Theorem 3.5 that the rate of convergence is essentially
given by

(338) O(q~ V4 (dm)—p—gq) * ¥
+ @ D 4 dl)-p—g) ).
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If m, ! and ¢, are large enough with ¢; = p,then the rate of con-
vergence is asymptotically O(p~(°~1), which coincides with that of
(1.21). In the case where a,a;;, f and J are sufficiently smooth,i.e., k
and v are large enough, even when d(m) =~ 2p +1 with ¢; = p and
d(l) = p+ 2 with g2 = 1 the first term in (3.38) may dominate, so
that the rate of convergence is asymptotically O(p~(°~1)) which is the
same that of ||u — u,l|; . More precisely, in G-L quadrature rules, us-
ing I, and I; with (p+1)-point and p-point G-L rules respectively we
would obtain an asymptotic rate O(p~°—V),

When one of aa;; and J f is not smooth enough, either because one
of them is not smooth in the original problem or because a non-smooth
mapping T is used, the first term ¢; "(°~1) may be dominated by one
of the other terms. In this situation, using an overintegration with a
sufficient number of m or I we may reduce the error |u —u,l|; o

until the first term dominates again. In practice, when @@;; is not

smooth we may increase the value of d(m) with ¢; ~ p. When f]? is
not sufficiently smooth we also increase both of d(!) and g¢,.

We now estimate the Ly (2)- error. To estimate the error ||u — u, ||
we start with the following Lemma.

LEMMA 3.6. Let u be the exact solution of (1.8)-(1.9) and u, the
p-version solution of (1.16). Then, for an approximate solution u, of
up which satisfies (2.5) we have

(3.39)

flu— ﬂp“o,g < flu- U‘P”o,n

1 -
+ sup (IB(u,,,w) B, Q(“p7w)|
wp €Sp,0(R) “wP”o Q

+ |(faw)9 - (faw)l,ﬂl)’

where for each w, € Sp0(?), w € S,0(S) denotes the solution of
discrete variational problem:

(3.40) B(w,vp) = (wp,vp)a forall v, € S,0(R).
proof. By the triangle inequality we have

(3.41) llu = pllg @ < llu —upllo @ + llup — Upllg 0-
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where ¢ is a positive integer such that 0 < ¢ < pand r = d(m)—p—q >
0.
proof. For w € S, (§2) we have

(3.49) | B(d,,w) — mn(ﬁp,w)l

6up ow . Ou, 0
< C{max|(aa,, a,\‘, 01])9_ (aa.J 3'\ , 6x,>mA|}'

Let ¢ be any integer such that 0 < ¢ < pandr =d(m)—p—q > 0.
Then, for any : = 1,--- ,n, due to Lemma 3.3 with f, = II}aa;; and
Vg € Uy(R), we have

. Ou, 0% — iy o)

53 /

A~ v
az' q“ 0.6

,

< ¢ “H:aaijno,oo,ﬁ |

au,, ”

+ ||aa,J 1 aa,]“o o, Q"

}II AII :
Ti 0,0

Since ||II} @d,;l, . g < ll@@:; — 117 @a;ll, o g + @@;;ly o0 g We easily
see from Lemma 2.3 and (1.10) that ||II} @d;j||, . g is bounded by
a fixed constant for any r = d(m) — p — ¢ > 0. Moreover, taking
du, = ~ = ~ . a
= 1'[1( u” + up) + I (@ — up) — M@ in Uy() we have from
Lemma 2. 1 that

au -
351) Nl i N 52—l
O,Q
<o i3, - q(a“P+ A
orT; 0,9

HI(@ - %) - @ =Tyl 5 + 17 - L, 5 )

< Ceg(up) + a7 la -l 5 + 077Nl 5,
where C is independent of p and gq.
In addition, we obtain from (3.35) that
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Since u, — U, € Spo(2) the last term of the right side in (3.41) can be
characterized as ( ol

~ Wy, Up — Up)Q
(3.42)  lup — up”o,ﬂ = sup BF 2

wp€S,o@  Wpllog
Hence we obtain from (3.40) that
(343)  [(wp,up — Up)al = |B(w,u£— Up)| N N
< |B(w,up) — Bm,a(w,ip)| + |Bma(w, up) — B(w,ip)|.

Due to the fact that B(-,-) is symmetric and w € S, (), it follows
from (1.16) and (2.5) that
(3.44) |(w,up—Tip)a| < |B(lp, w)—Bm,a(tp, w)|+|(f, wla—(f, w) ql
This completes the proof.

The above Lemma indicates that the error |[u — ||, o will depend
on several terms. The first term |[u —u,|l; o in (3.39) was already
discussed in (1.20), which depends on the smoothness of the exact
solution u(z). The other terms will depend upon the smoothness of
a(z), f(z) and the mapping T

Now, for each t € Up(ﬁ) we denote

N (i
. = _— - < p.
(3.45) &q4(?) mgXII(%H) Hq(%ﬁt)nm, 0<g<p

I

Then, we obtain

(3.46) &,(t) < Cq OVt 5 forall teUy(Q),

where ) is a sufficiently large number. Moreover, it follows from (2.8)
that

(347) e,(H)=0 forall e Uy(Q).

Here,we have the following Proposition.

PROPOSITION 3.7. Let @ € HZ(Q), @ € H"(Q), J € H%Q) and
a;; € H/(Q) fori,j = 1,..,n with k = min(a,p) > n. Then, for
any w € S, o(2) we have
(3.48) |B(up,w) — ?m,ﬂ(ﬂpvwﬂ R

< Ceq(p) + a7 Nlill, 0 + a7 IE — Ul 5

+r=E =BT - upll, g + 1@l g, o Mo} D], g,
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. . ot
(3.52) |laa;; — H:"aaijno,oo,ﬁ”-é—%” ~
t 0,

b

< Cr=®=DJall, a M|, 5
< Cro¢=Dal, g M,(1 - Tll, g + il g)-

Thus, substltutmg (3.51) and (3.52) in (3.50) we complete the proof,

since || H <C ||w||l,n.
Zi 0.8

From Lemma 3.6,due to (3.2) and (3.48) we have the following the-

orem.

THEOREM 3.8. For any In, I € Gy, defined on Q C R", let
u € H"(Q) ae€ H"‘(Q), Je HG(Q) f € H“’(Q) and @;; € H”(Q)
for ¢35 =1,---,n such that k = min(a,p,~,6) > n.Then, for any
positive mtegers ¢1,92 suchthat 0 < g < d(l)—p—-1 and 0<
¢1 < min(d(m) — p — 1, p), we have

(353)  lu-lyo < C{a " lll, 5
@+ PGl 5 M) -,
+r; FP)al, 8 M, 80, 5
+ @~ DIl 5 UTlg o + 171155
+r27C= D Tl (1 fllo,cod + 1F1,.8) + 0 (@)

where k =min(a,p),r2 =d(l)—p—g2 and ry, =d(m)—p—q.

proof. For each w, € 5,0(R) let w € S,0(2) be the solution of
(3.40). Then, since w € S,0(2) we have B(w,w) = |[(wp,w)y| <
lwpllg ollwllg,q- In addition, due to Poincaré’s inequality and (1.10),
we easily see that there exists a fixed constant M such that

@l g

(3.54)
“wp"o,g

<M.

Thus, by a direct application of proposition 3.7 and Lemma 3.2 to
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Lemma 3.6 we have

(3.55)

1 ~ ~
sup ——-—(IB(Up, w) — Bm,ﬂ(uw w)|
wp €Sp,0(N) ”wPHO,Q

+ I(f’ 'lU)Q — (f, ’U))I’QI < C { a1 —U”a”a,ﬁ

_ —(k=2) 1~ ~ =

+ (e Pl M) e -l 5
—(k=2) 1~ ~

+r lall,.a Mol g

+ @ T DYflLa 1 llo s + 17150)
+ 12" O (17l o + 151, 0) + €00 ()

Moreover, it follows from (1.20) that the first term of the right side
in (3.39) is dominated by the first term in (3.55). This completes the
proof.

When d(m) and d(I) are large enough with ¢; = g, = p, the rate
of convergence for || _51’”1,9 is asymptotically O(p~(?~V), which
coincides with that of [lu —u,||; o. Also, it follows from (3.47) that
the Ly(Q) error ||u — Upllg o in (3.53) is asymptotically O(p~7) under
nearly exact integrations, which is the same with that of |lu — u,|ly
in (1.20). Moreover, we see that under certain conditions the Ly(2)
error |lu — up|l, o has nearly O(p™!) improvement over the H! error
lu — ||, o- In the case where a and f are sufficiently smooth, i..,
a and v are large enough, even when d(m) = 2p + 1 with ¢; = p and
d(l) = p+1 the first term of the right side in (3.53) may dominate
the other terms, so that the rate of convergence for |ju — Uplly o is

asymptotically O(p~?). When a or f is not smooth enough we may
reduce the error ||u — ||, o by increasing the value of d(m) or d(!)

respectively. In fact, using overintegrations I,,,(m > p) or Ij(I > p) we

recover the optimal rate of convergence for ||u — ||, -
,

4. Numerical experiments
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We consider the following one-dimensional problem:
d , du
() =f o 0=[0)

with u(0) = u(1) = 0.

Here,a and f are chosen in such a way that the exact solution is u(z) =
e” sin(z) —e! sin(1)z. Of course, the simulations have no need for the
knowledge of the exact solution u.

EXAMPLE 4.1. We choose a(z) = 1/(z + w) for w > 0 and take
the mapping T(Z) = ((24+¢€)* = (1 =7 +¢)* )/ ((2+¢€)* — &) with
a = 2.5 and ¢ = 0.001, If w is near to zero, then a(z) and f(z) Lave
poles near to x = 0 in the original problem. Hence we need the over-
integrations L,, and L; in both of the stiffness matrix and the load
vector. When we choose w = 0.001,the H'(Q2) and Ly(Q)-error
results in Figure4.1.1 and 4.1.2 respectively, follow under the case
where L,,(m = 1000) and L;(I > p).

We consider the following two-dimensional problem:
—div(aVu)=f on Q C R? withu(z)=0onT.

EXAMPLE 4.2. In the case where the domain 2 is the trapezoid
with vertices 4 = (0,0), B =(2,0), C =(0,1), D = (1,1), we consider
mapping T : (%1, 32) € @ — (21,22) € Qgiven by z; = (;41) (3
z2)/4, =z = (T,+1)/2. We choose a(z1,z2), f(z1,23) in such a
way that u(z1,z2) = 2122 (21 + 22 — 2) (e/®21) —1). In particular,
we take a(r;,z2) = 1/(z1 + w) with w > 0. If w is near to zero, then
a(zy,z2) has a singularity near to the z;-axis, and also f is singular.
Hence, even if the mapping T is smooth enough, a@,; and J f are not
sufficiently smooth, which is caused by the original problem. To obtain
optimal results we may use overintegrations L,, and L;. When w =
0.05, Figure4.2.1 and 4.2.2 show the results in the case where L,,(m =
50) and L;(! > p+ 1) are used.
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