ON THE SUBFACTORS
RELATED TO GROUP ACTIONS

JEONG HEE HoNG

Introduction

After V. Jones’s work ([4]) on index for subfactors, the classsification
of the subfactors of a type IT; factor has been one of the central sub jects
in the theory of operator algebras.

In the theory of subfactors, principal graphs and, more generally,
paragroups of inclusions are most important invariants for finite index
subfactors with trivial relative commutants (see [2], [9], [13]). Unfor-
tunately, direct computation of the principal graphs is quite difficult
even for the subfactors constructed explicitly. For this reason, several
authors have tried to understand a more managable case about sub-
factors associated to crossed product construction by group actions,
more generally Hopf algebra actions ([3], [9], [14]). In particular, for
crossed products by a finite group, it is well-known that finite group
theory and the representation theory of groups determine the principal

graphs ([6], [7]).

D. Bisch and U. Haagerup have recently investigated in [1] a class of
subfactors P C P x K, where the finite groups H and K act outerly
on a hyperfinite type II; factor P. By using bimodule techniques,
they studied the properties like irreducibility, finite depth (see [2] for
the definitions), amenability, and strong amenability (in the sense of
S. Popa in [13]) of the inclusion. Also they were succesful to provide
various examples of subfactors. In spite of those examples of subfactors,
it is still difficult to sketch the explicit algorithm of the paragroups
for P¥ C P x K as in the case of crossed products construction,
for example P C P x G by a finite group G outer action. In this
paper, we are going to compute the basic construction of the inclusion
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PH c Px K, when P is an arbitrary type II; factor. As a consequence,
this will provide a better understanding of the principal graphs for the
inclusion.

The author would like to express her sincere thanks to Professor Wo-
jeiech Szymanski of the University of Newcastle for valuable discussions
and helpful comments.

2.Preliminaries

2.1 Group actions and subfactors

Let P be a type II; factor with a unique normalized trace 7. Let
H and KU be finite groups acting outerly on P via

a: K — Aut(P) and (:H — Aut(P)

respectively. In this section we quote some preliminary materials and
fix notations which will be needed in the sequel.

1 Identities in all algebras will be denoted by I. The complex
numbers are denoted by C. And C[G] denotes the complex
group algebra of a finite group G. '

2 For s € K, a,(z) = szs™1, (z € P), where s is viewed as a
unitary element implementing the automorphism as . Then
Pxo K ={Y  cnzss|as€ P}

3 Similarily, Bx(z) = hzh™! (z € P), for h € H. Then pH
denotes the fixed point algebra of P under the action .

4 The vector space K° of linear functionals on C[K] is a Hopf
*— algebra dual to K. Then there is a dual action & of K° on
P x, K, defined by

ap(zs) = zk(s)s, for s € K, and z € P,

when k is an element of K°. Then the dual crossed product is
given by

(P xo K) %o K° ¥ P = {3 yupi | v € Pxo K},
teK
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where p; denotes the minimal projection in K°. Hence

Pl = { E T tSPt I Tt € P}7
3,teER

and ag(ps) = kpsk™! = pi, for k € K°.

Since the involved actions are outer, it is well-known that PH and

Px, K are type I, factors with (PH)Y (P =CI, P'(\(Px,K)=CI.

Let G be the group generated by H and K in the outer automorphisms
Out(P) = Aut(P)/Int(P), where Int(P) denotes the set of inner au-
tomorphisms of P. It is shown that some properties of the inclusion
can be expressed in terms of properties of the group G, by using the
bimodule techniques ([1]). In this article, our aim is to study the in-
clusion

RN G

based on the representation theory of finite groups. Since P¥ Cc P C
P x, K, the Jones index ([4]) of the inclusion is

[P xq K : PH] =[P x4 K : P|[P: PH) = |K|H|,
where | - | denotes the order of a group.
2.2 The algebra P;

At first we describe the algebra P;, with the help of Y. Nakagami and
M. Takesaki’s duality theorem in [8] and some results in [10]. We denote
by L£2(L) the Hilbert space, whose inner product < a,b >= p(b*a)
with the Haar trace ¢ of K (a,b € I'). Also we denote by End(L?(K))
the C*— algebra of linear endomorphisms of £2(K).

LEMMA 2.1 [10]. Let @ = {K,K°} () Py , where ' denotes the
commutants. Then the following hold.
1 The subalgebra {K, K°}" of P;, generated by K and K°, is
isomorphic to End(L*(K)).
2 There is a x— isomorphism from P onto @, given by z —
Ysek @s(z)ps, for z € P.
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Proof. Note that I'° acts on I\ via k-5 = k(s)s, for s € I and
k € K°. Thus the crossed product algebra is &' x K° = {K, K°}".
Then there is a *— isomorphism from i x K°® onto End(L?(L')). This
gives the first assertion.

For the second assertion, choose ¢ = Zs‘t Ts8py € Q, with z,, € P.
Then ¢ commutes with IV if and only if z4-1,s = ap(z,-1,,) for
r,t,s € K. Also ¢ commutes with K° if and only if =, -1, = 0 for
s(# e).t € K. Therefore Q = {d° . as(z)ps|r € P}. Then the map
given by x +— ) . a,(z)p, determines a *— isomorphism from P
onto Q, for z € P.

The following theorem is essentially the Duality theorem of Y. Nak-
agami and M. Takesaki ([8]).

THEOREM(DUALITY THEOREM). P, = Q @ End(L?(K)).

Proof. It follows from tha fact 1 of Lemma 2.1 that P, & P ®
End(L%(K)). Therefore, by the fact 2 of Lemma 2.1, P, & Q ®
End(L?*(K)). :

2.3 An action o of H on P,

To estabilish a crossed product of P, by H, we define an action o
of H on P, as follows;

DEFINITION 2.1. For h € H, the action o) : H — Aut(P)) is
defined by

1 on(s) =s, for s € IX,
2 Uh(ps) = Ps, for s € K,
3 on(Xsen as(T)Ps) = X sei as(Bn(z))ps, for z € P.

From now on, é, ; denotes the Kronecker’s delta as usual.

PROPOSITION 2.1. If x € P, then we have
on(z) =Y ex(asBra;t)(z)ps. Also op : H — Aut(Py) is outer if

h #e.
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Proof. Let € P. Then

on(z) =0on()_ zp,)

sE€EK

= Uh[z as(as_l(l’))ps]

sEN

= Z a,[Br(a; (z))]ps

seK

=Y (a.Bra;")(z)ps

SEN

by the property 3 in Definition 2.1. The outerness of 0 now comes from
the outerness of « and j3.

Therefore, the crossed product algebra

PixoH={ Y @ssnspihlzssn € P}
s,teK,heH

is a type II; factor. Note that the normalized trace Tr on P; X, H is
given by
T\T
Tr(zspeh) = T%’I_)a”eé"’e’ for z € P,

where 7 denotes the normalized trace on P.

3.The Jones tower for P C P xo K

3.1 The Jones basic construction

In this section, we are going to show that P; x, H is the desired
basic construction for P¥ C P x4 K under a proper assumption. In or-
der to compute the basic construction for PH C P x4 K, it is enough
to find the Jones projection for the inclusion. Note that the corrre-
sponding Jones projection lies in the relative commutant algebra of
PH in the basic construction. We need the following observations for
the element’s form of the Jones projection.
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LEMMA 3.1. Let s,t € k', h € H, and 6 be an arbitrary outer action
of K on P. If z,,), € P satisfies Toth0(y) = yzsn for ally € PH,
then there is a function us s : K x K x H — U(P)|J{0} such that

0(y) = Us 4 hYUs,t,h, for all y € pPH,

whenever u, s, # 0. Here U(P) denotes the set of unitaries in P.

Proof. For s,t € K and h € H,let 4 460(y) = yzs1 for 4,4 € P,
y € P2, Then 0(y)zs i n = Ty ¢ nY, by taking the adjoint of both sides.
Since
Touh Tt h0(Y) = T3 4y - To0n = O(Y)25 4 Ts 0,

we see that
s entsen € (P (P or 671 (2}, 4os ) € (PHY(\P=cI

. Hence, there is a scalar A € C and a unitary u, ,, € U(P)|J{0} such
that x4 6 = Aug ¢, h, if Ug ep # 0.

Thus, 741 r80(y) = Aus,,10(y) and yz, ¢ n = yAus . It now follows
that us ¢ ,0(y) = YUg,t,hy OF O(y) = u:’t'hyus,,,h.

Due to Lemma 3.1, we now give an explicit proof of the following
fact, described in [1] without proof. 7" will denote the torus.

PROPOSITION 3.1. Thereis a 2-cocyclew : (HNK)x(HNK) — T
such that (PH)' (\(P x4 K) = C,[H N K], the complex group algebra
twisted by w.

Proof. Let 3 x5 € (PHY (P xq K), with z, € P. If y € PH,
then

Z TS Y=y - Z Ts8, OT Z Tsa4(y)s = Z YT 8.

seK SEN SsEK seK

So we have z,a,4(y) = yz, for all s € K. By Lemma 3.1, there exists
a unitary element u, € P such that a,(y) = ulyu,, if uy # 0. Thus
Tsugy = yrsuy, and so zoul € (PHY (P 2 C, if u, # 0. Therefore
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Ty = A\su, for some A\, € C, if u, # 0. This implies that u,a,(y) =y
for y € PH, or adusa, € G(PH,P) = B(H). Here G(PH P denotes
the Galois group of the inclusion P C P (see [5]). Hence there is a
h € H such that 8, = adusa,, ie., ay = B in Out(P), for s € K and
h € H. In other words,

(PH)' ﬂ(P Xo N) = {Z Asugsls € HN K in Out(P)}.
SER

On the other hand, if y € PH, then
usugul yusuiuy = (a;lay oy )(y) =y

. This implies that u,usu®, € (P7) (P = CI. Therefore there is a
2-cocycle w : (HNK) x (HNK) — T, given by u,u; = w(s,t)ust,
such that

(PHY [Y(P xo I) = Cu[H N K].

This completes the proof.

The following corollary comes immediately.

COROLLARY 3.1. PH ¢ Px K isirreducibleif and only if H( K =
{e} in Out(P), where e denotes the neutral element of the group G.

From now on, we assume that H[JK = {e} in Out(P). Under this
assumption, the unitaries u, ¢4 in Lemma 3.1 also determine the form
of elements in (PH) (P, x, H).

LEMMA 3.2. If H( K = {e} in Out(P), then every element of the
algebra (PH) (P, x, H) has the form

Z )‘s,t,hus,t,hspth(/\s,t,h € c)
s,teK,heH

Proof. Let y € PH¥ commute with Es,tel\',hEH TsynSpth € PLxXo H,
with 24+, € P. Then we have

y- > Teuasph= > zeamsphy
s,tEK ,heH s,lEK,heH
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implies that

Z Y Ts,t,n5peh - = Z T t,h3pthy - h!
s,teN.heH s,teEN,heH

= Z l'syf'hspto.h(y.)

s,teN,he H

= Z Ts,t [,bO’h( )Pt

s,teK,he H

= Z ;L‘s,t,h.S[Z(agﬂha;—l)(y)Py]Pt

s,teN . heH geEK

- 6g,t Z ws,t,hs(atﬁhat_l)(y)pt

s,teK,heH

=80 Y. zaenas((aBrai ) y))spe

s, tEK . heH
-1
= byt Z Lot h(CstBrayg ” )(y)spi,
s,tehN,heH

by the property 3 of Definition 2.1 and the fact that p, € P'. Thus
for all s,t € K and h € H, we have YZoth = Tsan(@stBra; *)(y).
Then, by Lemma 3.1, there are unitaries us ¢ € U(P) {0} such that
(aseBra; b y) = Uy ¢ hYUs,ths if Ug e # 0. Therefore

i1 — > — *
Tgt, hus t,hYUs,t,h = YTs t b, OT J’s,t,hus,t,h?/ = YTs,t,h U ¢ p-

ie. Tst,hUy,p € (PHY Y(P = CI , and so we see that Tstp =
As,t.hUs t.h for some scalar As,t,h- This completes the proof.

Note that the trace preserving conditional expectation E : P x, K —
PH s given by

E(Z xss)zEgyng”(Z T48) E I Z Br(ze),

sEN sek heH

where e denotes the neutral element of a group G. Also, the trace
preserving conditional expectation F : Py x, H — P x, K is given

by
1
F( )y TathsPh) = T Y T,
s,teK ., heH s€EK
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in a similar way. We now can determine the Jones projection due to
Lemma 3.2, i.e., it has of the form Zs,tel{,hEH As.t,hUs ¢, nSPeh, With
)‘s.t.h eC.

PROPOSITION 3.2. Let H( | = {e} in Out(P). Then

1
q=|—fI—|ZPeh€P1 xq H
heH

is the Jones projection for PH C P x4 K.

Proof. Since p; commutes with h € H, the straightforward compu-

tation gives that ¢ is a projection in P; X, H. Also, ¢ commutes with
PH Indeed, for y € PH,

1 1
Y- q=— ypeh = — yhpe.
H] ,,}e:,,"p H] ,;,

But hyp, = on(y)hpe = Zte}\'(atﬂha:l)(y)pf ~hpe = Ztel\'(atﬂha’t_l)
(¥)hpipe = b1,eBr(y)hpe = yhpe, for y € PH_ Therefore,

1 Z 1 Z 1 Z
. = — h e = T ] e — TT— h ey = Y,

because y € P and p. € P'.
It now suffices to show ¢zq = E(z)q for z € P x4 K. Let z,5 €
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P x, I, with z, € P. Then

, 1
q(zss)g = |H|2 Z Peh - 245 peg

h,gEH
1
= — Z hpe - T35 - Peg
|H| h,geH
1
== hzs - pespe - g
1
= ) hz, - SPs-1Pe9
IHI h,geEH
1 .
= 63,(&'_2 Z Uh(l‘e)hgpe
’Hl h,geH
> D (aePrai™)
IH' h,geH teK
LT (Seter
I I h gEH te kK

6te s, e 5 Z ﬂh('v )hgpe

|HI h,g€EH

1
6te se IHI Zﬁh(a ][lI{—t

heH
= E(z,s8)q.

This completes the proof.
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Note that
- F eh F eh
(lﬂl,gg,p )= (ZP )= |H||I|
= [P Xa I( . PH]—1I1
and
Tr(q) =Tz |H| D peh) |H|”(Zpeh) |HI II |

heH
=[P xo K : PH]!
Now we are in a position to conclude the basic construction for PH C
Px, K.
THEOREM 3.1. Let H(\K = {e} in Out(P). The basic construc-
tion for the inclusion P2 C P x4 K is isomorphic to Py X, H.

Proof.. By Proposition 3.2, the projection ¢ € P, x, H satisfies
1 g€ (PH),
2 F(q) =[P xo K : PH]'I,
where F denotes the trace preserving conditional expectation from
P, X, H onto P x4 K. Then it follows from [4] (or [11]) that Py xo H
is isomorphic to the basic construction for PH C Pxq K.

3.2 The Jones tower

Let M_y = PH, My = P xo I and My = (M,e_;) = P X, H,
where e_; denotes the corresponding Jones projection for the inclusion
M_; C Mj,. Note that n, (s € i), given by

ns(xtpr) = xtp,s-1, forx € Pt,7 € K,

determines an outer action n : ' — 4ut( Py).

LEMMA 3.3. Px, K =M, = (P;)", the fixed point algebra under

the action n of k' on P;.

Proof. Since 7 fixes P and s € I\, it is clear that P xo K C (P)X C

P,. Thus we have

[P : (P)R] =[P : P xo K] = K],
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and so [(P)M : P x, K] = 1. Hence, the result follows from the
properties of Jones index (see [4]).

With the help of Lemma 3.3, we conclude that there are outer actions
o:H — Aut(P),nN — Aut(P;),

such that My = (P))* C Py x, H = M;. This situation is exactly
like M_; C My , when M_, is replaced by M, M, replaced by M;,
P replaced by P, K replaced by H, and H replaced by I'. The
next result follows immediately after repeating the same process as in
Section 3.1. Also note that there is a dual action & of the dual Hopf
*— algebra H° on P; X, H.

PROPOSITION 3.3. Let Py = (P, x4 H) x4, H°. Then, ps(s € ),
given by

1 ps(h)=nh, for h € H,

2 ps(pn) =pn for h € H,

3 po(x) = X penlonnsoy )(@)pa, for z € Py.

4 ps(Xnen on(@)Pn) = X pep on(ns(2))pa, for x € P,
determines an outer action p of K on P, such that My =P, x, K.

For the Jones tower, we use P x K instead of P x4 I by dropping
the involved actions in our notations, since no confusion is possible.

COROLLARY 3.2. Let
M_y=PH My=PxK and M, = (M,_;,en_1),

where e, denotes the corresponding Jones projection for M,_o C
M,_1, (n >0). Then
‘]\/{271 = P2-n X I(a

Msnyy = Pyyyy x H,

where Pyn = (Pzn—1 X ) X K° and Pynyy = (Pon x H) X H® (n > 0).
Here the involved actions on P, are as described in Theorem 3.1.

Proof. The result follows from Theorem 3.1 and 3.2, inductively.
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