ON THE L,(Q)-ERROR FOR THE P-VERSION
UNDER NUMERICAL QUADRATURE RULES

IK-SuNG KM

ABSTRACT. We consider non-constant coefficient elliptic equations of
the type —div(aVu) = f,and employ the P-version of the finite element
method as a numerical method for the approximate solutions. To com-
pute the integrals in the variational form of the discrete problem we
need the numerical quadrature rule scheme. In practice the integrations
are seldom computed exactly. In this paper, we give an Lz(£2)-error es-
timate of |lu — ||y o in comparison with |lu — Upl|; q,under numerical
quadrature rules which are used for calculating the integrations in each
of the stiffness matrix and the load vector.

1. Introduction

Let Q be a closed line segment I = [-1,1]in R* or I x I in R? with
boundary I' , and Sobolev spaces
(1.1) H™?(Q) = The completion of {u € C™(Q) : ||u||
equipped with norm

. 1/p
(1.2) nun,,.,,,,g=( > na'un’.?,p,n) £ 1<p<oo

mp2 < oo},

0<[i|<m
1.3 = o'
(1.3)  Jullmen = max [0%ulo,co,
where || - || , o is the usual Ly(Q)-norm, and the subscript p may be

dropped when p = 2.
We define a space H*(Q) = {u € H™(Q) : u vanishes on I'},
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and consider the following problem: To find u € H}() such that

d  du . 1
(1.4) —Ea-ﬂ)—f in QCR',
(1.5) —div(aVu)=f in QC R%

Here, the above problem is supposed to be well-posed in the sense
that the bilinear form B(-,-) is elliptic and continuous over (H&(Q))z,

(1.6) B(u,v) = / aVu - Vudz.
Q
For sake of simplicity, we assume that
(1.7) 0<A;<a(z)<A; forall zeQ,
and
(1.8) f € La(2).

Using the p-version of the finite element method over a single element
we have the following discrete variational problem of (1.4)-(1.5): To find
up € Sp () such that

(1.9) B(up,vp) = (f,vp) forall w, € S,0(R),
where

1.10 v) = vdr

(1.10) (F0) = [ foda,

(1.11) Up(R2)
= {t : t is a polynomial of degree < p in each variable on Q},
and

(1.12) $5.0(R) = Up() N HA(R).

Here, we have a L,(f2)-error estimate for the p-version:
(1.13) flu —uplly o < C’p"‘l]u[lk’Q forall uwe HEQ),k>1.
It follows from the assumption of exact integrations in (1.9), and the
following Lemma can be found in [2] and [6].
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LEMMA 1.1. For each integer 1 > 0, there exists a sequence of pro-
Jections

(1.14) pr : H{(Q) - Uy(Q), p=1,2,3,---, such that

(1.15) H;,vp = v, forall v, € Upy(f),

(1.16) ||u — l'I;,uHﬂ,Q < C’p"(r""’)||u||ry9 for all u e H™(Q)
0<s<I<r,

where C is a constant independent of p and u but depend upon r and l.

In this paper, under a family G, = {I} of numerical quadrature rules
with respect to U,(£2) we shall give an actual problem of (1.9), and derive
an estimate of ||lu — U||, o in comparison with llu — Upll, o, Where up is
an approximation of u, which satisfies (2.2).

2. Preliminaries
Let I be numerical quadrature rules defined on 2 by

n(k)

(2.1) () = Y utfeh) ~ [ f@)d.

We consider a family G, = {Ix} of quadrature rules with respect to
Up(R), p=1,2,3,- -, satisfying the following properties:
For each Iy € Gy,

(K1) wF>0 and 2¥eQ for i=1,---,n(k).

(K2) L(f*)<Clfloq forall feUyQ).

(K3) Cliflloq < I(f7) for all f € Up(Q),

where D(@) = { o1+ f € Up(@)} C Up(®)

(K4) Ik(f) = fﬂ f(:z) dz for all f € Uyx)(Q),
where d(k) > d(p) > 0.
In particular, let L, be the g-point Gauss-Legendre (G-L) rule in RY,
or the cross-product of g-point G-L rules along the z and y axes in R7‘
respectively. Then, {Lq}q>l(p) is a family of G-L rules with respect to
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U, (§2), which satisfies the properties (K1)-(K4) with d(¢) = 2q—1. Here,
I(p) denotes p in R!, and p + 1 in R? respectively.

Hence,using numerical quadrature rules I, and I; in G, we obtain
the following actual problem of (1.9): To find %, € Sp () such that

(2.2) B (tp,vp) = (f,vp), forall v, € S,0(Q),
where
(2.3) (u,v), = Iy(uv),

(24) Bp(u,v) = Z( Ou Ov ) on QCR",n=1or2.

=1 ‘ a;, 3_.1:.
In addition, due to (1.7) and (K3) we easily see that B,,(-, -) is elliptic.

This allows us to solve the above approximate problem (2.2).

The following Lemma can be seen in [5].

LEMMA 2.1. For QCR"n=1o0r2,let ue€ HY(Q) with v > n.
Then the projection II7 from Lemma 1.1 satisfies

(28)  flu=Tpull, o < Cp O Dyl 4

3. Main results
To estimate the error ||lu — %, ||, o We start with the following Lemma.

LEMMA 3.1. Let u be the exact solution of (1.4)-(1.5) and wu, the
p-version solution of (1.9). Then, for an approximate solution i, of u,
which satisfles (2.2) we have

(3.1) llu = pllg.q < llu—upllq

1 ~ ~
+ sup ——(|B(uUp,w) — B (up, w)|
wp €Sp,0(R) ||wp||o,n

+ |(f’w) - (f’w)ll)7

where for each wy, € Sy o(Q), w € Sp o(2) denotes the solution of discrete
variational problem:

(3.2) B(w,vp) = (wp,vp) forall vy € S,0(R).
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PROOF. By the triangle inequality we have

(3.3) llu —tpllg.q < llu = upllg g + Ilup = sllo q-

Since up, — Up € Sp,o(Q) the last term of the right side in (3.3) can be
characterized as ( o)
Wy, Up — U

(38.4) |lup—Upllyq= sup —~—LE—P2

I =Urlon =, &P @ Toplon
Hence we obtain from (3.2) that
(35) (gt —Tp)l = Blwyup )| i

< |B(w,up) — Bm(w,Up)| + |Bm(w,¥p) — B(w, Up)|.

Due to the fact that B(:,-) is symmetric and w € Sp o(2), it follows from
(1.9) and (2.2) that
(386) |(,up — p)| < B(Ep,w) = Bon(iipy )] + (1) = (o).
This completes the proof.

The above Lemma indicates that the error |lu — up|, o Will depend on
several terms. The first term [lu — upl|y o in (3.1) was already discussed
in (1.13), which depends on the smoothness of the exact solution u(z).
The other terms will depend upon the smoothness of a(z) and f(z). In
this connection, first we give the following Lemma.

LEMMA 3.2. Let u,, w, € Up(Q) and f € Loo(Q). Then, for all
vy € Ug(R), fr € U(Q) with 0<g<p and r=d(m)-p—¢>0

we have
(3.7) | (f up,wp) — (f “p,wp)m |

< C{lfrllo,collur = vallo.g + If = frllo,c0allusllo,q } Iwsllo,a

where C is independent of p, ¢ and m.

PROOF. It is similar to that in [5, Lemma 3.3].

Now, for each t € Up(Q2) we denote
= ot . [ Ot
. : == — f— ——— < .
(3-8) Eq(t) = max| (3m,~ +t) I (6_% +t) llm, 0<g¢g<p
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Then, we obtain
(3.9) Z(t) < Cq O Vt|,q forall teUyQ),
where )\ is a sufficiently large number. Moreover, it follows from (1.15)
that
(3.10) E,(t) =0 forall teUy(R).

Here,we have the following proposition.

PROPOSITION 3.3. Let u € H{(2) and a € HP(§2) with p > n. Then,
for any w € Sp0(f2) we have

(3.11) |B(ipw) — Bon(py )| i
< C{Eg(Up) + 4 " Nlullp0 + a7 lu —Uplly 0
+r7 =) (Jlu ~ Byl g + llully @llall, 0} 1wl 0
where g is a positive integer such that 0 < ¢ < pand r = d(m)—p—gq > 0.
PROOF. For w € S, o(§?) we have

(312) | B(ipw) = Bu(iiy )|
du, Ow du, Ow
< 9Up | 1} P-4
C{ma‘x'<“ oz’ 3:1:,) ( bz;’ 69:,) 3
Let ¢ be any integer such that 0<g<pandr= d(m) p—q > 0. Then,
for any i = 1,--- ,n, due to Lemma 3.2 with f, = [I7a and v, € Uy(Q),
we have

Ou, Ow Bup Oow
(3.13) | (“a_’ 5;) B ( 3:1:, ax.) |

< O IFally 0 152 vel_

8u 0w
+lla-M"a —L£ —2
Since |7 allg o < lla—17algoa + llallyee we easily see from

Lemma 2.1 and (1 7) that ||II? aHO 0, 18 bounded by a fixed constant
Ou

for any r = d(m) — p — ¢ > 0. Moreover, taking v, = H;(E% + up) +

I (u — Up) — Myu in Uy() we have from Lemma 1.1 that
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. i
(3.14) IIHTGIIOwnlla—;:—quI 0

< {2+ - (52 + )] .

+l(u — up) — Mg(u — up)llo o+ llu = Tgull o}

< C{Eg(Up) + ¢ llu —plly o + q—””u“aﬂ}
where C is independent of p and gq.
In addition, we obtain from Lemma 2.1 that

(3.15)  |la-TIP ‘1“0009” Il
< Cr_(”_—)“a“pgnup‘hn
< Cr=e=D|al|, o(|lu — Tplly g + lully0):

Thus, substituting (3.14) and (3.15) in (3.13) we complete the proof,
w
| < Cllwlly g

since || IS
)

b

To estimate the third factor that ||u — Upl|, o depends upon we will
use the following proposition.

PROPOSITION 3.4. Let I € G, be a quadrature rule on Q C R,
which satisfies d(I) —p—1 > 0. Let f € H4Q) with p > n. Then, for
any w € Sp0(Q2) we have

(3.16) I(f,w) = (f,w),| S Cr=¥= DI f]|, ollwlly 0,

where r = d(I) —
PROOF.  Since (II" f,w) = (II* f, w), for w € Sp,0(Q) and r = d()—-

p, we have

(3.17)  |(fyw) — (fyw)] S |(f =T7f,w)l + |(f — T2 f w)l

Using the Schwarz inequality and Lemma 1.1 we have

(3.18) I(f -7 f,w)l < CHIf =2 flloallwlio,e
< Crflluellwlloo-
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Also, it follows from Lemma 2.1 and (K2) that

(3.19) I(f = TI2f,w)y] < ClIf = T2 fllg o o, w)}
< Cr=D|If|l allwlloq-

Since (3.18) is dominated by (3.19) it completes the proof from lwllo.g <
c ”w”1,9'

Now, we shall state the main theorem.

THEOREM 3.5. For any Im, I} € G, let u € HZ() be the exact
solution of (1.1)-(1.2) and U, € Spo(Q) an approximate solution of Up
which satisfies (2.2). We assume that a € H?(Q) and f € H*(Q) with
min(p, ) > n. Then, for any integer q such that 0 < q < pandr =
d(m) —p —q > 0 we have

(3.20) [ = Ullo,0 < C{g™%ull, 0
+ (g7 +r7 " Da||  o)llu = pll, o
+r7 " Bllal, gllully 0

+ () =) * RSl + (i),
where C' is independent of p and q.

PROOF.  For each w, € Spo() let w € Sp () be the solution
of (3.2). Then, since w € Sp0(2) we have B(w,w) = [(wp, w)| <
”wp“o,(z”w”o,n- In addition, due to Poincaré’s inequality and (1.7), we
easily see that there exists a fixed constant M such that

(3.21) Il <M.

llwsllo.q

Thus, by a direct application of proposition 3.3 and 3.4 to Lemma 3.1
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we have

1
(3.22) sup  ———
wpeSp.0) 1Wpllg o

+1(f,w) = (f,w)]) < C{gNull .0
+ (g7 + 7 Da]|, o)llu — Gl q
+r= =D, gllull, o

+(d() = )" £l 0 + Eg(@)}-

Moreover, it follows from (1.13) that the first term of the right side in
(3.1) is dominated by the first term in (3.22). This completes the proof.

(1B(tp, w) — Bm(tp, w)]

In [5] we easily obtain the following estimate

(3.23) llu = @plly 0 < € {a™ " lull, q
+r==Dja||  gllull,

+(d(1) — ) "D £l o}

Hence, when d(m) and d(l) are large enough with ¢ = p, the rate of con-
vergence for |lu — u,||, o is asymptotically O(p~(?~V)), which coincides
with that of |[u —upl|, 5. Also, it follows from (3.10) that the Lj(2)
error {[u — Uy, o in (3.20) is asymptotically O(p~7) under nearly exact
integrations, which is the same with that of [|u — u,|, ¢ in (1.13). More-
over, we see that under certain conditions the Ly(£2) error ||u — |, o
has nearly O(p™") improvement over the H' error [lu — 4|, q.
Here, we see the following facts.

(1) In the case where a and f are sufficiently smooth, i.e., p and u
are large enough, even when d(m) = 2p+ 1 withg=pandd(l)=p+1
the first term of the right side in (3.20) may dominate the other terms,
so that the rate of convergence for ||lu — U,||,  is asymptotically O(p~7).

(2) When a or f is not smooth enough we may reduce the error
llu — U, o by increasing the value of d(m) or d(l) respectively. In fact,
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using overintegrations I,(m > p) or I}(l > p) we recover the optimal
rate of convergence for |lu — up||, o-

(3) We define the ratio

v — uplly g
flu— ap”l,n
Then, for two sufficiently large m and [ the ratio R(p,m,![) is nearly
O(p™!). Moreover, in the case where a(z) or f(z) is not smooth enough
overintegrations may be reguired to further reduce the ratio R(p,m,!)
until the term p~! dominates again. But, when p and p are large enough
rather than ¢ we have no need of overintegrations, i.e., taking d(m) =
d(l) ~ 2p + 1 with ¢ ~ p we obtain the optimal O(p~?!).

(3.24) R(p,m,l) = for m>p and !> p.

Now, to confirm the main results we shall consider the following one-
dimensional problem:

——dii-(az—z) =f on I=[-1,1]

1
(z4+14w)’
in such a way that the exact solution is u(z) = (z + 1)% ~23(z + 1).
Especially, taking w = 0.01 we see that the exact solution u(z) is not
smooth enough in comparison with that of a(z). Hence, we expect that
R(p,m,l = 1000) is nearly O(p~!), even when m = p. Figure 3 shows
this phenomenon in the case where overintegrations L,,(m > p) are
used and L;(I = 1000). Moreover, since a(z) has a pole at z = —1.01
which is very close to £ = —1 the overintegrations I,,(m > p) may
be required to recover the optimal results, O(p~7) for |ju — |, o and
O(p~*—V) for ||u — Up|l; - When overintegrations Ly (m > p) are used
for ||u — Upllg @ and |lu —Up||; o, Figure 1 and Figure 2 represent those
results respectively. ’

with u(—1) = (1) = 0. Let a(z) = w > 0. We choose f(z)
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