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Numerical Analysis on Transmittance of Radiative
Energy Through Three— Dimensional Packed Spheres

Yong-mo Kim*, Won-yeong Kim**, Cheol Oh** and Suck-hun Yoon***
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1. Introduction

Several devices for the control and utilization of thermal energy have been developed which
utilize packed bed or dispersed flow such as high temperature regenerative heat exchanger and
droplet radiator for the heat cycles in space stations. The thermal energy is mainly transferred by
radiatiom in those systems, whose characteristics were analyzed assuming the packed beds to be
continuous . Analytical results for radiative transmittance through packed spheres failed to
correlate with experimental data®. The reason for such a discrepancy was not provided.

The present study is to numerically analyze the radiative transmittance through a vessel filled

with randomly packed spheres of equal diameter by a Monte Carlo method. The effects of the side
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walls on the radiative transmittance are taken into account. A computer program is developed for
generating the pattern of three-dimensional, randomly packed spheres.

Two methods are proposed to radomly pack the spheres in a three-dimensional space : one is
to directly pack them in a random manner, while the other is to randomly rearrange an initially,
regularly packed system. Typical examples of the former method are: (i) to place the spheres
at an arbitrary location (%, y, z), which is determined by the multiple sets of three random
numbers, with the spheres not intersecting with those in the previous set ¥, and (ii) the slowly
settling sphere model ®. The method ( i ) takes an extremely long computation time to determine
a random arrangement in a packed bed with higher packing density. The slowly settling sphere
model (ii) can produce only an arrangement called loose random packing with a packing density
of approximately 0.5-0.6, which cannot be chosen arbitrarily. The method of random rearranging
initially, regularly packed spheres is used to determine the relation between several transfer
coefficients and the inter-molecular force ®. It simulates the kinetics of individual molecules by a
Monte Carlo method. A computer program is developed to generate a three-dimensional, random

packing of regularly arranged spheres with arbitrary packing density.

2. Procedure to Obtain Randomly Packed Spheres

2. 1 general flow

The analysis is performed on a parallelepiped whose dimension is depicted in Fig. 1. Initially,
spheres of equal diameter are placed at the lattice points of each face-centered lattice. Lattices
are uniformly stocked in the parallelepiped region whose dimensions are XL by YL by ZL. The

diameter of each sphere is
D={(6C-XL-YL-ZL)/(IT - =)} (1)

Here, C is the packing density, and IT is the total number of spheres in the region whose

dimension is determined by

YL=(]3/2) XL (2)
ZL=(]/2/3) XL (3)

The parallelepiped is surrounded by similar ones which repeat consecutively outward to infinity.
With this system structure, the computer needs to memorize the position of spheres in only one
parallelepiped.

Now, the analysis begins with a regualr arrangement of spheres in the parallelepiped. These
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spheres are then moved in there-dimensional random directions, one by one following the

procedure described in Fig. 2.
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When one sphere collides with another, it is deflected as in an elastic collision, and travels a length
L which is randomly determined. When it comes to a stop, the movement of the next sphere is
started, After all spheres are tried, the procedure is resumed with the -first sphere. With N
repetitions, the final positions of the spheres are stored to be used in the subsequent calculation for
radiative transmittance.

The programing in Fig. 2 can be grouped into four parts: (a) a routine to determine the moving
direction and the travel length of spheres. (b) a routine to search th first struck sphere in the target
region, (c) a rotuine to decide the direction of deflection after collision, and (d) a routine to
determine the terminal of a sphere in case of no collision and to move it to the destination.

Details of the routines are presented in the following :

2. 2 initial conditions of movement

The moving direction of the sphere is determined randomly by using two uniform random

numbers between 0 and 1, namely RND1 and 2 ? as

6=2 = - RND1 (4)
n=cos"'(1—2 - RND2) (5)

Here, 8 and # are the angles defined in Fig. 3. The total travel length is obtained by another

random number, RND3 as
L=LMAX - RND3 (6)
where, LMAX is the maximum total travel length which is given initially.
2. 3 idientifying the first struck sphere

Consider two adjacent regions, “firing” region (i ) from which the tracer sphere is originated
and “foreign” region(ii). The tracer sphere has four possible collision cases: (i) with a
“domestic” sphere in the firing region, (ii) with a “foreign” sphere in the firing region, as shown
in Fig. 4, (iii) with a “domestic” sphere in the foreign region, as shown in Fig. 5, and (iv) with a
“foreign” sphere in the foreign region. Here, (PX, PY, PZ) and (PXN, PYN PZN) denote the initial
and colliding locations of the tracer, respectively, and (PX’, PY’, PZ’) is the colliding location of
the collided sphere. Two routines are in the computer program: One is to test the collision

case( i ) and the other to examine case (ii).

The two routines treat case (iii) as no collision, while case (iv) is treated like case (ii). Figure 6

depicts the way to determine the first struck sphere. The sphere initially at A (PX, PY, PZ) moves
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Fig. 5 Collision outside a Firing Region

Fig. 6 Collision Length

to a new position B (PXN, PYN, PZN), with the directional cosines of -(/1, K, v), as detetmined by
Egs. (4) and (5). Here,

A = cosbsingy (7)
u=sinbsiny (8)
o= cosn 9)

Let H be the distance from the center of a sphere C to the line AB and TS be the distance between
A and B. Here,

H={(PX'—PX)*+(PY'—PY)*+ (PZ'—PZ)*— TSL*}'* (10)
TS=TSL - |D*-—H? (11)
TSL= A(PX'—PX)+u(PY'—PY)+v(PZ'—-PZ) (12)

If H is smaller than the diameter D and TS is positive and takes the minimum value, the sphere
is the first one to collide with the tracer sphere.

Next, the center of a collided sphere (PX’, PY’, PZ') situated in the “foreign” region is
determined in order to ascertain a collision with the tracer sphere in the “firing” region, as shown
in Fig. 4. Such a collided sphere gas its center in the peripheral region surrounding the “firing”
region (i) with the width of D. as illustrated in Fig. 7. When the travel distance of the tracer
sphere is less than L defined by Eq. (6) at collision, it collides with the sphere and rebounds at the
surface (branch flow A in Fig. 2). When the travel distance exceeds L, the tracer sphere stops after

travelling a distance L (branch flow B in Fig. 2) and proceeds to move to the next sphere.

_R1—
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2. 4 reflection

When the tracer éphere collides with a sphere (PX’, PY’, PZ’) at the point (PXN, PYN, PZN),

it is reflected in the new direction (1, x’, v’), as shown in Fig. 8. Here,

| PERIPHERAL |REGION
i o

T
NTARGET|REG ION

Fig. 7 Peripheral Region Fig. 8 Reflected Direction
A =(PXR—PXN)/PL (13)
s =(PYR—-PYN)/PL (19)
v =(PZR—PZN)/PL (15)
PL  ={(PXR—PXN)*+ (PYR— PYN)*+ (PZR + PZN)*}'? (16)
PXR =2(PXN +ut)—PX 17)
PYR =2(PYN+yt)—PY (18)
RZR =2(PZN +wt)—PZ (19)
¢ ={u(PX—PXN)+v(PY-PYN)+w(PZ—PZN)}/ (u*+ v*+ w?) (20)
u =PX’'—PXN (21)
v =PY’'—-PYN (22)
w =PZ'—PZN (23)

After reflection, the computational flow path in Fig. 2 returns to point E, and a search for the first

struck sphere begins.
2. 5 moving to outside “firing” region

When the tracer sphere misses collision within the “firing” region, it travels into the “foreign”
region, and a search for the first struck sphere in the new region is continued. When the travel
distance of the tracer sphere reaches L, determined by Eq. (6), the sphere comes to a stop at the
point (branch flow C in Fig. 2).
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2. 6 numerical examples of randomly packed spheres

Figure 9 shows a cube filled with regularly packed spheres with a packing density of 0.55.
Figures 10 depicts the sectional view of the'packed spheres along the X-Y plane. An example of
randomly packed spheres with a packing density of 0.55 is depicted in Fig. 11. Figures 12 also
illustrates the sectional view of the rendomly packed spheres. The average radial distribution
function G(R) is incorporated to indicate the randomness of the spheres +®. Its definition is

(average number of spheres which have their centers between R to R+dR from the
center of each sphere)
=4z R*dR - N - G(R) (24)

where, N is the average number density of spheres. Hence, the function G(R) represents the
average ratio of the real number density to the average density at a distance R from the center

of each sphere.
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Fig. 9 Numerical Result of Regular Fig. 10 Cross-sectional View of Regular
Arrangement (C=0.55) Arrangement (C=0.55)
When the value of the function is unity and independent from R, the arrangement of the spheres
is completely random.

Figure 13 shows the average radial distribution function G(R) of the packed spheres with regular
arrangment shown in Fig. 9. This curve has many peaks even at a remote distance from each
sphere indicating an arrangement with strong regularity. Figure 14 shows the function of packed
spheres in random arrangement as shown in Fig. 11. The value of G(R) is practically unity except
in the vicinity of a sphere. This implies that the arrangement lacks a long range regularity. The
deviation from unity at the left end of the curve indicates the existence of some regularity near
the surface of each sphere. The observation can be explained by the fact that no sphere can
intersect with other spheres. This phenomenon can be observed in the results of the slowly settling
sphere model ® and in the experiment of steel spheres packed in a rubber bag ¥.

Figure 15 shows the sectional view of randomly packed spheres with a packing density of 0.6.
The packing density differs from section to section, but maintains a regularity at the sections with

higher packing density as shown in Fig. 15.
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Fig. 12 Cross-sectional View of Random
Arrangement (C=0.55)

Fig. 11 Numerical Result of Random
Arrangement (C=0.55)
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Fig. 16 Average Radial Distri-bution Function
Fig. 15 Cross-sectional View of Semi-random for Semi-random Arrangement (C=0.6)
Arrangement (C=0.6)

Figure 16 depicts the average radial distribution function of this arrangement, which shows
some regularity at a larger distance from the surface of each sphere. This corresponds to the
case where latex spheres with a diameter of around 0.05-1 micron begin to form a regular

arrangement in water with a packing density over 0.5-0.55%.
3. Analyses on Transmittance Through Packed Spheres

In analyzing the transmittance of radiative energy through the packed spheres whose
arrangement is determined by the previous section, radiative energy is diffusely emitted from a
surface which is parallel to the z=0 wall of the parallelepiped region at a distance of 0.5D, as
shown in Fig. 17. The emission of radiative energy is simulated by a large number of energy
bundles emitted from many arbitrarily chosen points (%o, Vo) on the surface in the direction

dictated by Lambert’s cosine law. The position (X,, y,), the angle between the Z axis and each
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direction of energy bundle, and the angle » between the X axis and the projected direction of

energy bundle on the X-Y plane are obtained through the use of four random numbers (RND1-4)

as
(%, w)=(RND1-XL, RND2-Y,) (25)
y=1(1/2)cos~*(1—2 - RND3) (26)
n=2= - RND4 (27

After the emission of energy bundle, its collision with spheres or the side walls of the region is
checked. When it strikes the side walls, two boundary conditions are considered : one is a periodic
boundary and the other is a specular one. In the periodic boundary case, the striking energy bundle
is reemitted from the opposite side wall in the direction parallel to the one before collision. In the

case of speclar boundary, the striking energy bundle is reflected by the wall.
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Fig. 17 Simulation of Radiative Transmittance
in Packed Spheres
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Fig. 18 Models of Randomly Packed Spheres

For the periodic boundary, the spheres have the same arr%mgements in every region, as shown
in Fig. 18 (model a), which simulates the packed spheres of infinite width. For the specular
boundary, however, two models, (model b and c), are considered, as shown in Fig. 18. In the
(model b), the intruded part of each sphere is cut off, while in the (model c), all spheres are
arranged to situate inside the region. The local packing densities of the (models b and c) at the
narrow zone along the side walls are lower than that of the (model a), as shown in Fig. 19. The
(models b and c) simulate the actual experimental system » with specular side walls and low
packing density zone along the side walls. In the (model c); certain variation in the packing density
is observed in Fig. 19, due to the aligning effect of spheres ®. The energy bundles incident on the

-spheres are either reflected or absorbed, whose probability depends on the emissivity of the

surface. Specular reflection is considered in the analysis.



Yong-mo Kim, Won-yeong Kim, Cheol Oh and Suck-hun Yoon

8 T T T T T T T T T
(8]
2>
Z
c
o
°
g
e —-—model
I 2 ————model b
model ¢
0 1 ! i 1 1 1 1 1 I
. 0 .2 RA 5 .8 1
I T | I = Y/IYL
a \ Monte Carlo Method (€ =0.6) . . . .
: \\ Boundary | Sphere No. of Flg' 19 PrOflleS Of Local PaCklng DenSlty
-\ N condition|surtage ispheres
- \(\ [F-®-—model a
N\ 216
=1 AN -~A—{mode! b Specular
10 £ \\ N £20.4 o
-~ x -A—Imodel b 320 10 T T I =)
C o E f
= model ¢ 86 : /A
B - \ — // A
c - ~ - /A
z -2 o — A// / —
=10 & - Y] )
€ E 3 c - / -
v E 3 2 //A/
c C | = v
< F 4 £ 1’ ulr
— | - - —
(2) w — g —
| —-— Continuous 4 < Eoprmrid - -2 o]
model — —
-y Specutar surface = ~ BoundaryNo. of ]
10 €:z04 C=0.58 \‘ — conditlion|spheres
- B AN 3 — i
E (£} ‘\ \ 3 | [--®—{model a |
[ — Experimental resulls ™\ g - 216
- Polisnedcarbon steel Yo\ - | |—A—{modet b o
I D=v48 \ -
- €:=04 C =f.6 3 k\\ l 101 ~—4A—Imodel b | 320
10 | 1
0 1 2 3 4 3 6 Center 0.5 walt

. Relative distance from the center
Layer Thickness t/D elative & m he cente

Fig. 20 Radiative Transmittance through  Fig. 21 Profiles of Radiative Transmittance
Packed Spheres

4. Numerical Results and Discussion

Figure 20 depicts the numerical results of radiative transmittance through the packed spheres
with specular surfaces and the packing density of 0.6. The experimental result of Churchill et al. ¥
and the numerical one of Howell et al. by the continuous model ? are also depicted in Fig. 20. The
variable t/D for the horizontal axis represents the non-dimensional thickness of the bed. The slope
of the experimental results on transmittance decreases at t/D=1-2, which is not appeared in
Howell’s results.

In the present study with low packing density zone along the side walls, the reduction in
transmittance in the (models b and c) is much less than that in the (model a) with infinite width.

Figure 20 also depicts that the (models b and c) yield the inflection of the transmittance curve at
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t/D=1—2. For the sake of investigating the wall effect, the profiles of the transmittance are
plotted in Fig. 21 at a section of t/D=2.2—2.3. These profiles depict that transmittance in the
(model a) is uniform due to the infinite width, and that the transmittance in the (model b) is higher
in the vicinity of side walls due to the existence of the near-wall low packing density zone. This
effect appears higher in the packed bed which contains the smaller number of spheres. Hence, the
characteristics of radiative transmittance in the (models b and c) can be explained by the combined
effect of the highly attenuating central region and of the peripheral region with lower attenuation.
To show the difference in the transmittance between these two regions, the numerical results of
the (model b) with 320 spheres is depicted in Fig. 20. Compared with the results for 216 spheres,
the increase in transmittance of 320 spheres is somewhat reduced resulting from an increase in the
cross-sectional area of radiative energy transmittance. It implies that, in measuring the
transmittance of packed spheres, the distance between the side walls should be wide enough
relative to the sphere diameter in order to reduce the side-wall effects.

The numerical result obtained from the (model c) is superimposed in Fig. 20. It agrees well with

the experimental results of Churchill et al..
5. Conclusions

(1) A computer program is developed for the arrangement of equal-diameter spheres in a
packed bed with arbitrary packing density. It is shown that this program can make random
arrangement for the beds with a packing density less than 0.6.

(2) The low packing density zone adjacent to the side walls causes a decrease in the bed
beginning at the 1-2 diameter depth from the surface of radiation entrance.

(3) An empty space between the side walls and the packed body of an approximately 10-
diameter width contributes to an increase in the transmittance of radiative energy by an order of
magnitude. The enhancement effect diminishes with an increase in the cross-sectional area of the
packed bed perpendicular to the direction of radiative transmittance.
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Ministry of Education under number C (62550140). A part of the numerical computations was

performed at the Hokkaido University Computing Center.
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