LINEAR OPERATORS STRONGLY
PRESERVING MULTIVARIATE MAJORIZATION
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ABSTRACT. In this paper, we will investigate the set of linear operators that strongly
preserve multivariate majorization. We determine the linear operators that strongly
preserve multivariate majorization with T(I) = I and which map nonnegative matrices
to nonnegative matrices.

1. Introduction

Our interest is the subject of majorization for matrices. We generalize the definition
of majorization from vectors to matrices. It is called “multivariate majorization”.
This basic idea makes sense whether the components of @ and b are points on the real
line or points in a more general linear space. Very little is known about majorization
where the components of a and b are not in R™ ([1],[5]).

Let A be a linear space of matrices, T be a linear operator on A, and R be a
relation on A. A linear operator T is called strongly preserves R if

R(T(X),T(Y)) if and only if R(X,Y).

Those linear operators on a matrix space that preserve commuting pairs of matrices
were characterized in [2]. In 1987, all similarity preserving operators on the n x n
complex matrices, unitary equivalence preserving linear operators on the Hermitian
matrices, and (sub)majorization preserving linear operators on Hermitian matrices
was determined in [3]. And characterizations of linear operators on a matrix space that
preserve consimilarity, *-congruence, nonsingularity, and unitary equivalence were
obtained in [4].

In this paper, we will study linear operators that strongly preserve multivariate
majorization. For a simple characterization, we need the hypothesis that T(I) is
equal to I. We determine the linear operators that strongly preserve multivariate
majorization with T'(I) = I and such that T preserves the set of nonnegative matrices.
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2. Main results

A nonnegative real matrix is called doubly stochastic if each of its row sums and
column sums are equal to 1. Let Q, denote a set of all n x n doubly stochastic
matrices. The set 2, is closed under matrix multiplcations, conjugate transposition,
and convex combinations, that is, if A, B are doubly stochastic, so are AB , A*, and
aA+(1—-a)B for all 0 < a < 1. An obvious example of a doubly stochastic matrix is
the n x n matrix in which each entry is %, Jn. It was showed that this is the unique
irreducible idempotent n x n doubly stochastic matrix in [6]. In [7], it was showed
that if P and P~ = Q are both doubly stochastic, then P is a permutation matrix.
Let M,(R) denote the set of all n x n matrices over the real field R.

DEFINITION 2.1. Let A and B be n x n real matrices. Then A is said to
be multivariate majorized by B, written A <™ B, if there exists an n X n doubly
stochastic matrix D such that A = BD.

THEOREM 2.2.  Let T be a linear operator on M, (R) that strongly preserves
multivariate majorization, then T is nonsingular.

Proof.  Suppose T'(X) = O. Then T(X) <™ O. Since T is linear, T(O) = O. This
implies

X <™ 0
beacuse T' strongly preserves multivariate majorization. By the definition of mul-

tivariate majorization, there exists an n X n doubly stochastic matrix D such that
X=0-D.Hence X=0. 1

Now, we will find an interesting property of a multivariate majorization strong
preserver.

THEOREM 2.3.  Let T be a linear operator on M,(R) that strongly preserves
multivariate majorization. Then the followings are equivalent:

(1) T(P) = Q where P and Q are permutation matrices;
(2) T(D) =S for D, S € Q;
(3) T(J) = Jn.

Proof. (1) < (2): For any doubly stochastic matrix D, we have D <™% P for every
permutation matrix P. Hence

T(D) <™ T(P) = Q

where @ is a permutation matrix. Therefore T(D) € Q,,. The converse is similar.
(2) < (3): Since J, <™ D for any doubly stochastic matrix D,

T(J,) <™ T(D)=§
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for S € Q,. Therefore T'(J,) = J,. Converse is obtained similarly. W

LEMMA 2.4. [7] If D and D! are in Qy,, then D is a permutation matrix.

COROLLARY 2.5. Let T be a linear operator on M,(R) that strongly preserves
multivariate majorization. If T(I) = I, then the three conditions of Theorem 2.3 hold.

Proof. 1t is sufficient to show that T'(P) = @Q for permutation matrices P and Q.
For any permutation matrix P,

p <mul [ gmul p
So, there exist doubly stochastic matrices D and S such that
T(P)=I1-D=D

and
I=T(P)-S.

This implies I = D - S. Thus,
T(P)=Q

where @ is a permutation matrix by Lemma2.4. The proof is complete. W

Let E;; denote the matrix with a 1 in the (i, j) entry and zero in every other entry
and M, (R") denote the set of all n x n nonnegative matrices over the real field R.

Theorem 2.6. Let T be a linear operator on M,(R") that strongly preserves
multivariate majorization. If T(I) = I, then there exists a permutation matrix P
such that T(X) = PTXP for every X € M, (R").

Proof Since T : Mn,(RY) —» M,(R"), we must have that T(E;;) has only nonzero
entries on the main diagonal since T(I) = I. But, by Corollary 2.5, T(E; + Q)
is a permutation matrix for every matrix @ such that F;; + Q is a permutation
matrix. Since T is nonsingular, it follows that T'(E;;) = E;; for some j. Let P be
the permutation matrix such that PT(E;)PT = E;; for every i. Such a permutation
matrix exists since T is nonsingular. Let T1(X) = PT(X)P7 for all X.

Now, by an argument similar to the above, using a permutation matrix that has a
1 in the (4, j) entry, we have that T} (E;;) = E,, for some (r,s). If r £ 4,5 and s # 4, j
then there is a permutation matrix, S, which has a 1 in the (Z,7) entry and a 1 in the
(r, ) entry, but then T} ~*(S) must be a permutation matrix which has 1’s in the (3, )
and (,j) entries, an impossibility. Thus, suppose 7 = ¢ and i # j. Then, if s # j,
there is a permutation matrix, R, which has 1’s in the (¢,s) and (j, ;) entries. But
then, T, *(R) is a permutation matrix with 1’s in the (4,) and (j, ) entries, also
an impossibility. Thus T1(E;;) = E;; or T1(E;;) = Ej;i. Further, since T and hence
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T preserves permutation matrices, T1(E;;) = E;; for all (,5) or T1(E;;) = Ej; for
all (4,7). Thus, we have that T3(X) = X for all X or T3(X) = X7 for all X. Now,
let K be the matrix with 1’s in each entry of the first column, and zeros elsewhere.
Then, K majorizes J,, but K7 does not, thus, the map X — X7 does not preserve

multivariate majorization. That is T; is the identity transformation, and it follows
that T(X) = PTXPforal X. MW
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