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1. Introduction

We consider nonlinear heat flow in a homoge-
neous bar of unit length of material with mem-
ory with the temperature u=u(¢, x) maintained
at zero at x=0 and x=1 by the similar method as
[2]. We shall assume that the history of u is
prescribed for t>0 and 0<x<1. The equation
satisfied by u in such a material is derived
from assumptions that the internal energy €
and the heat flux ¢ are functionals of u and of
the gradient of u, respectively. According to the
theory developed by Nunziato [13] for heat flow
in materials of fading memory type the func-

tionals € and q are taken respectively as

e(t, x)=owult, x)+ fo Bt —suls, x)ds,  (1.1)
q(t, x)=— kuslt, x) - + [y a(t - $)o(usls, x))ds
(1.2)

where a>0, k>0 are given constants and B, a :
[0, ]—R are given sufficiently smooth func-
tions(called the internal energy and heat flux
relaxation functions, respectively). In the physi-
cal literature B and a are usually assumed to be
decaying exponentials with positive coefficients.
The real function o : R—R in (1.2) will be assu-
med to sCYR), o(0)=0. It should be noted that
the o(r)=r gives rise to the linear model derived
in Nunziato [13], and that (1.2) is one reason-

able generalization of the heat flux for nonlinear
heat flow in one space dimension.

If f=Ait, x)ECY[0, o) ; L0, 1)) represents
the external heat supply added to the rod for ¢
>0 and 0<x<1, and if u(0, x)=uolx), 0<x<1
is the given initial temperature distribution,
the law of balance of heat(e:= — divg +f) shows
that in one space dimension the temperature u
satisfies the initial boundary value problem

5% {alt, )+ [y Bt - s)uls, x)ds)
- kuxd(t, x) - [y a(t — s)o(ux(s, x))ads
=ft, x), (1.3)

u(0, x)=uox) (0<x< 1), ult, 0)=u(t, D=0(=0),
where subscripts denote differentiation with
respect to x.

In the case B(t)=0, a=k=1, in Section 3 we
consider the initial boundary value problem to
the following equation :

urt, x) - ux(t, x) - [y at - s)Xo(uxs, x))xds

=ft,x),0<x<1,t=0, (1.4
u(t, 0)=u(t, 1)=0,t=>0, (1.5)
u(0, x)=uolx), 0<x<1. (1.6)

2. Preliminaries

Here, all functions may be real value. We
denote by L¥0, 1) consist of functions f on some
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interval [0, 1] such that |f(¢)1? is Lebesgue
integrable on this interval. The space L%0, 1) is
Hilbert space with the inner product

(£, 8)= Jo Rx)glx)dx,
and norm is given by
IF1=(fy flx)dx)¥

H'(0, 1) denotes the set of all functions whose u
is absolutely continuous on [0, 1] and whose de-
rivatives up to degree 1 belong to L0, 1). H*(0,
1) is a Hilbert space with inner product and
norm by

(u, vn=(u', v")+(u, v),
fulli=Clul2+ 1ul?)e,

respectively, for all u, v&HY0, 1).
Denotes

Hy(0, ={u€H0, 1)l x(0)=u(1)=0},
Hy(0, 1)cHY0, 1).

Hence H(0, 1) is a Hilbert space with inner pro-
duct and norm by

((u, V)= [§ w'(x)'(x)dx,
Nl =(f5 u'xydx).

respectively, for all u, vEHy(0, 1). Denotes
H*0, 1)={usH" 0, 1){u'; absolutely continu-
ous on {0, 1], u"€L%0, 1)}. Hence HX0, 1) is a
Hilbert space with inner product and norm

(u, v))2e=(u'", v")+@', v")+(u, v),
lulle=Clu" 124+ lu' 12+ (ul2)=,

respectively, for all u, veH0, 1). H Y0, 1)=
H(0, 1)* denotes the set of all functions whose
derivatives up to degree 1 in distribution sense
belong to LX0, 1). i.e.,

-1 — ii[ 2,
H Y0, 1)—{dx!f€L (0, 1)}

where H(0, 1)* is dual space of Hy(0, 1). By the
definition, if uH (0, 1) then there exist f&

L*0, 1) such that u=f but f don't exist unique-
ly. As a matter of fact, let u=/ and ¢ is a con-
stant then f4+c&L¥0, 1),

u=(f+c)'.

Conversely, suppose that f, g=L%0, 1) and
f'=g'=u. then (f-g)’'=0. Hence f is constant
function. If we select f such that fo Ax)dx=0,
then fis uniquely determined by u. Let

u,vEH 0, 1), u=f, v=g', [, fx)dx
= fol g(x)dx=O

and
(w, v)) =, &), llul.=1fl,

then H (0, 1) becomes a Hilbert space with
inner product (( - , - )) * amd norm || - || .. Ther-
efore,

Hy0, 1)CL¥0, )CH Y0, 1).

3. Assumptions and main theorem

By the definition,
H0, DNHK0, 1)={ueH*0, 1) u(0)=u(1)=0}.
Let A be the operator defined by

D(A)=domain of A={ulu€H¥0, 1) N HO0, 1)},
(3.1)
Au= - Au(A=Laplacian), ucD(A). (3.2)

Then A is positive definite self - adjoint opera-
tor. suppose that o(r) is defined continuously
differentiable on R, the derivative o'(r) is
bounded. That is, there exists M >0 such that

lo'(r)| <M (3.3

for —oo <r< oo, Obviously o(r) satisfies uni-
formly Lijpschitz condition. In other words,

lo(r)-o(s)l <Mlr-sl (3.4)
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for r, sER. For uD(A) and by (3.4), the follo-
wing inequality holds.

lo(u'(x)) - o' <Mlu'(x)-u'(y.

Hence o(u'(x)) is absolutely continuous. For ue
D(A). the following equality holds

o(u'(x)' =o' (u'(x)u'"(x). (3.5)

Defining g(u(x))=(o(u'(x)))’ then g(u)(x)=
o'(u'(x)u"(x). By virtue of (3.3), for each u&
D(A), it follows that

gw)eLX0, 1), lgw)l <Mlu"l.

We need the following assumtions :

(i) a(?) is Holder continuous on [0, o) with
exponent p, that is, there exists a constant ¢>0
and 0<p<1such that

la(t)—a(s)l <clt-sl»
for all ¢, s€[0, ).

(il) uoeD(A).
(iii) At)EeCH[0, ) ; L¥0, 1)).

We write the mixed problem (1.2)-(1.4) as a
formulation in L%0, 1),

D4 1 Au(t) i alt - Sguls)ds =), (3.6)
u(0)=uo. (3.7

Theorem 3.1. Assume that (i) — (iii) hold. Let
u(t), fit) be a L¥0, 1) - valued functions of t,
respectively and

du, . .. u(tt+hk)-u®)
u(t)eD(A), ar (t)—lhlg(l) 7
be exist in the L0, 1) - topology. Then there
exist a unique solution u(¢) of (3.6), (3.7).

We can solve the problem (3.6), (3.7) by the fol-
lowing method. Setting g(v, u)=0'(v")u'" for all
vEH0, 1) and for all u€D(A). Obviously, q(u,
u)=g(u).

(a) Let v(t) be a Hy(0, 1) - valued continuous
function such that v(0)=uo,. We solve that the
following initial value problem :

9 (1) 4 Au(e) o a(t - $)g(u(s), u(sNds =fib),
3.8
w(0)=u,. 3.9

(b) Since the solution of Egs. (3.8), (3.9) is exist
and unique, the mapping 6 defined from H(0, 1)
to D(A) i.e., Bv=u. Therefore there exists a fixed
point of 0, that is, the fixed point is a solution of
Eqgs.(3.6), (3.7).

Proof of the existence [7, 8], (a) Obviously,
g(v, u) satisfies uniformly Lipschitz condition
that the following inequality : there exists M >
0 such that

lq(v, u) —qv, ug)! <M || ur—usg ||

for all UEH:)(O, 1) and u1, u2&D(A). Since A is a

positive definite self - adjoint operator, we set

A= fow AE(L) ; (real) spectral resolution of
operator A,

where E is a real spectral measure.

We are defined exp(—tA)= [y exp( - At)E(A) for
all t>0. It is known that, -~ A generates an
analytic semigroup in L?(0, 1)(1<p< ). For
each vED(A) we define

(Kvu)(t)=exp( - tA)uo
+ fo exp( - (¢ =~ $)A)Rs)
- [o als = rg(v(r), u(r)drids.

We show that for to sufficiently small, Kv is a
contraction. By (3.3), there exists a constant c(0
<< 1) that satisfy a following inequality :

(Kote1)(2) — (KouaXe) || <cllui(®) — uad)||

for all 0<¢<to. It follows that K» is a contrac-
tion mapping of D(A) into H¥0, 1). Hence there
is a unique fixed point u of Kv in H%0, 1) and
u(t) is a local solution of (3.8), (3.9). Then by
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previous arguments there exists a unique solu-
tion u(t) of (3.8), (3.9) on [0, ).

(b) Let ¢1, L, n are positive number and n< 1.
Define

S={weHy0, DI|lv@®)-v(s)|| <Lt -s1, v(0)

=uwo in [0, t1]}.

For 11, sufficiently small, then 6 : S—S is con-
tinuously compact mapping for some L, n.
Since S is closed, bounded, and convex, it fol-
lows from Schauder's fixed point theorem there
is a unique fixed point that satisfies (3.6), (3.7)
on [0, ¢1]. By the continuity, there exists a solu-
tion of (3.6), (3.7) on [0, o).

Proof of the Uniqueness. I the previous proof
we have only the existence of solution of Egs.
(1.2) - (1.4) in L¥0, 1). It remains to prove the
uniqueness of (1.2) - (1.4). For this purpose we
need some elements of functional analysis.
Putting

Au=- y'" for allue Hy(0.1).

Since ~u"=(-u'), - u'€L%0, 1) hold then
AucH0, 1), [o-u'"x)de=- u(1)+u(0)=0.
Hence, if for v H((0, 1), the function & satisfies

g'=v, [,gx)dx=0,
then by integration by parts and u(0)=u(1)=0.

(Au, v)o=(-u', g)=(u, g")=(u, v),
((u, Av))»=((Av, u) +=(v, w=(u, v)=((4u, v)-.

Therefore, the operator A is a symmetric and a
positive definite self - adjoint on H 0, 1).
Defined the linear operator A : H(I,(O, 1-H Y0,
1) by

D(A)={u€H\(0, 1)| AucLX0, 1)},
Au=Au for all ucD(A).

(3.10)
(3.11)

Since we may replace o(r) by o(r)+constants
without altering equation (1.4), we may assume
that o(0)=0, by (3.4) for all u Hy(0, 1) then

lo(w'@) = low'(x)) - o(0)| <M lu'(x)].
Hence
o(u)ELX0, 1), (o(u')EH X0, 1).

And if we put g(u)=(o(x"))’ then g is a mapping
from H(‘)(O, 1) to H %0, 1). In particularly, if ue
D(A), then gu)=g(u). By the above argument,
we consider the mixed problem (1.4)-(1.6) as a
formulation in H7 Y0, 1) ;

DO -+Au(0)+ J; alt - sulsds =),
(3.12)

w(0)=u, (3.13).

Obviously, if the solution of initial value prob-
lem (8.6) - (3.7) exists then that of (3.12) - (3.13)
exists, and the solution of initial value problem
(3.12) - (3.13) is unique then that of (3.6) - (3.7)
is unique.

We prove that the solution (3.12)-(3.13) is
unique. In general, if f£L%0, 1) then||f | .<
If]. By (3.4), we have

Il &) - &)l -=llo((m")' - (o(v"))')] -

<lo(u') - o(vl

SMiu'~v'l =M |lu-v|.
Hence g satisfies a uniform Lipschitz condition.
Therefore the uniqueness of solution of (3.12),
(3.13) follows from (3.8), (3.9).
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