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H'(2)- NORM ERROR ANALYSIS OF THE HP-VERSION
UNDER NUMERICAL QUADRATURE RULES

Ik-Sung Kim"

ABSTRACT. we consider the hp—version to solve non-constant coefficients ellip-
tic equations with Dirichlet boundary conditions on a bounded, convex polygonal
domain 2 in R2. In this paper we consider a family Gp = {Im} of numerical
quadrature rules satisfying certain properties, which can be used for calculating
the integrals. When the numerical quadrature rules I';n, € G are used for calcu-
lating the integrals in the stiffness matrix of the variational form we will give its
variational form and derive an error estimate of {lu — ﬁ:"l’n.

1. Introduction

The finite element method is a particular kind of Ritz-Galerkin procedure in
which the approximating finite-dimensional subspaces are composed of piecewise
polynomials defined on a partition of the given domain. The convergence is ob-
tained by increasing the dimension of these subspaces in some manner. There
are three versions of the finite element method. The h-version is the traditional
approach obtained by fixing the degree p of the piecewise polynomials at some
value (usually p = 1,2,3) and refining the mesh in order to achieve convergence.
The p-version, in contrast, fixes the mesh and achieves the accuracy by increasing
the degree p uniformly or selectively. The hp—version is the combination of both.

In this paper, to solve non-constant coefficients elliptic equations with Dirichlet
boundary conditions on a bounded, convex polygonal domain € in R? we consider
the hp—version with a quasi-uniform mesh and uniform p. In [6], 1. Babuska and
M. Suri already obtained the following optimal estimate for the hp— version:

(1.1) Jlu - u:j’Hl,Q < Cp~loDpmm@e=D|y||  for all u € HJ(Q),0 > 1,
where C is independent of u, i, and p [but depends on  and o].

The above optimal result follows under the assumption that all integrations
are performed exactly. In practice, to compute the integrals in the variational
formulation of the discrete problem we need the numerical quadrature rule scheme.
The integrals are seldom computed exactly. Thus we first consider a family G, =
{I,,} of numerical quadrature rules satisfying certain properties, which can be used
for calculating the integrals in the stiffness matrix of (2.17). Then, under the
numerical quadrature rules we will give its variational form and derive an error
estimate of {lu — fZ;jH]‘Q where H;: is an approximation satisfying (3.6).
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2. Preliminaries

Let Q be a bounded, convex polygonal domain in R? with the boundary I'. Let
M = {J"},h >0 be a quasi-uniform, regular family of meshes J" = {€2}'} defined
on 2, where Qi’. is a closed quadrilateral, and

(2.1) max diam(Q*) =h for all Q", J" € M.
Q"EJ"

Further we assume that for each Q! € J” there exists an invertible mapping T} :
Q — QF with the following correspondence:

(2.2) TeQle z=THE) e QP
and
(2.3) TeU,@) e t=To (T € U,(Q),

where {) denotes the reference elements 12 = [-1,1)? in R? |

24 U@ )
= {t : t is a polynomial of degree < p in each variable on 2},

and

(25)  U,(Qh) = {t:t=toT! cU,(Q)}.

We now consider the following model problem of elliptic equations :
Find u € H} (), such that
(2.6) —div(aVu) = f in QC R?,
where two functions a and f satisfy a compatibility condition to ensure a solution
exists, and

(2.7) H} () = {u e H() : u vanishes on T}.
For the sake of simplicity, we assume that

(2.8) 0<A<a(z) <Ay, forall z<€Q,and
(2.9) f € Ly{2).

In addition, we also assume that there exists a constant M > 1 such that
(2.10) |l ITE) Mo S A for 0Sm< M,

m,oc,ﬁ ?

(211) 1T ed s NI s SA for 0<m<M-1,

-1 —

where J! and (:]2_‘) denote the Jacobians of T}* and (7T}) ' respectively.
Then, as seen in [8,theorem 3.1.2], we obtain the following correspondence: For
any a € [l,o0}, 0 <m < M,

(212)  te W (@) et =Fo(T!) ' e Wme(l)
with norm equivalence
. m—2 m-2
(213) Clh( ")”t”m,a,”t S ”ﬂl o< Czh'( ")thni,n,“t’

moa ) —

with the subscript a omitted when o = 2. Namely, we have

(214) Cl™ el < 1T, 5 < Coh Vil qn
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Let us define
(2.15) $5(Q) = {u € HY(Q) : uqy o (T}) € Up(Q) for all Qf € J*},
where uq,n denotes the restriction of u € HY(Q) to QF € J", and
(2.16) Sho(Q) = SH(Q) N H(DQ).
Then, using the hp—version of the finite element method with the mesh J" = {Q}}
we obtain the following discrete variational form of (2.6):

Find u} € S;y(Q) satisfying

(2.17) B(up,vy) = (f,vp), forall vh e Sho(S),
where
(2.18) B(u,v) = / aVu - Vudz,

Q

the usual inner product

(2.19) (f,v)Q=Lfvdx.

Let us now give some approximation results which will be used later.

Lenma 2.1, For each integer | > 0, there exists a sequence of projections
I, : H(Q) - U,(R), p=1,2,3,--- such that

(2.20) '3, = 9, forall 3,€ Uy(Q),
(221)  |@-Tal 5 <Cp il 5 forall GeH ()
with 0<s<I<r.

Proof. See [9, Lemma3.1]. a

LEMMA 2.2 Letu € H’(ﬁ) with r > 2. Then the projection Hf, from lemma
1.1 satisfies

(2.22)  |[@-T2al, 5 < Cp "V, 5

Proof. By interpolation results ( see [9, theorem 3.2 | and | 7, theorem 6.2.4 | )
we have that for 0 < e < %,

1 1

. = _ 1127 N R 1 o1 L i o
(2.23) o - T4 oo < Cllu H,,qu H'”Hu HI,uH] &
We also have from lemma 1.1 that
224)  a-1a) 5 < Cp~C=I|fa], g for 0<r <2<
Hence, taking r =14+ ¢ and r =1 - € in (1.24) we obtain

1 1

9 9r, 15— T1273(1 2 N — 1127512 N —{s=1)i3n -
225 - mzald sl -meEd o < ool g,
which completes the proof from (2.23). O
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LEnMA 2.3, Suppose that T} Q— QU is an invertible affine mapping. Then
for anyv u € H?(§2),0 > 0 we have

inf  [igy — ]|, 5 < Ch¥llugyl_ .,

(2.26)
BeU, ()

where p = min(p,o — 1) and C is independent of h, p and u.
O

Proof. The proof is given in [6].

LEMMA 2.4. For each u € H°(Q) and QU € J" there exists a sequence z); €
U, (Q.) p=1,2,--- such that forany0 <r <o

(2.27) llugr — 2] o S Ch=rp==uqu|| , for all % € T",
(e Y

where ;« = min(p,o — 1) and C is independent of h, p and u.

Proof. See [6, Lemma 4.5].

3. The hp-version under numerical quadrature rules

Ve consider numerical quadrature rules I,,, defined on the reference element §2

by

(3.1) L.

Let G, = {Im} be a family of quadrature rules

where m is a positive integer.
satisfying the following properties: For

I,,, with respect to U,,(ﬁ), p=123,---,

cach I,, £ G,
(K1) @" >0 and e for i=1,--- ,n(m).

~2 -~ 2 -~ ~
(K2) L.(f )<Clllf||(m for all f € U,(Q).
(K3) Cy ufu(m ,,,(f) forall fey(@),

: feU,@) c U, (@)

where  U,(

(K41 1. / f(@)dz forall f € Uymy(),

where d(m) > d(p) > 0.
We alvo get a family G, = {I,n,q} of numerical quadrature rules with respect

to .S',’,'(ﬂl) defined by
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n(m) n{m)
(3:2) Ly (o) = 3 0t fou(a) = 32 @R T EN oy o THED)
1=1 1=1
= I,,,(:]Zf fgt)
and
(33) L, Q Z m,Qp fQ'I
Q"EJ"

Here, one may employ numerical quadrature rules schemes for computing the
integrals in the discrete variational form (1.17). Especially, since the model problem
(1.6) is a non-constant coefficients elliptic problem the numerical quadrature rules
I,n € G}, can be used for calculating the integrals in the stiffness matrix. Thus, we
denote by DF the 2 x 2 Jacobian matrix of F : R? — R?, and define two discrete
inner products
(34) (uav)m,nﬁ =1, A ((UU)Q") =1Inm (J;’:(uv)n:) on Q} € J"

38  (w¥)pa= 2 (wv),qronfl
Qh EJ"

Then, under the assumption that all integrations in the load vector of (1.17) are
performed exactly, using the quadrature rules I, € G, for computing the integrals
in the stiffness matrix of (1.17) we obtain the following actual problem of (1.17):
Find @ u € Sl, 0(82), such that
(3.6) B a(iy,vy) = (f,),, for all vy € S (),
where

Bm !2( ,,1 ’ ) = Im Q(avax . V‘U;:)

= Z 1, Kt aQ;. (;:)sz:'V(UZ)Qg)
zh j"
— e e~

Qregh

. =1 ,— 1yt b1y b - T L
Here, if we let (DT} ") (DT} ) = (bli bZ)’ then (a,)an = Ji (b)) are

the entries of the matrix J}! (DTL‘_I) (DT"—I) For the simplicity of notation, if
the restrictions agy , (a”)”i‘ , (E;;)Q,_ and (v")m are simply denoted by @ , a,, ,

1;; and vl’,' respectively, then we have
(3.7) B, (@, ")

P

; — /\l /h\l t S
- ) ~ h- - h
= 3 ra(Fag (V@) (DT (DTET) (Vh)ag))
Qb T
o\ vl
_ Z I (6 BEN (an 012> %, )
- 1 :‘h e —~ ’I
[ ()r') BED

il
]
-
)
:°>
QJ
@)
%
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auh avh

Z Z aa,, "8" ,81' )mQ

Qe =1

Let us now derive an estimate of the error {ju — ﬂ;j”l o for the Ap— version under

numerical quadrature rules I,,. In fact, lu — @l

The first dependence is on the error |ju — u;jHl q Biven in (1.1). Next, the error will
depend upon the smoothness of a. We will start with the following Lemma.

depends on two separate terms.

LEMMA 3.1. Let u be the exact solution of (2.6) and u}* that of (2.17). Let u )
be an approximate solution of u which satisfies a djscrete variational form (3. 6)
Then there exists a constant C independent of m such that

(38) M-yl q

B(u, ,wh) - B vy w"
<C inf {Ilu—'u;‘“1n sup |Bluy b) ~ ma (v, vyl
upES] () ' whesk () “wp ”1.9

}.

Proof. Let v ! be an arbltlary element in 1’,“0(0). Then we have

(39) “u ~h”1 0 “'U, — Y, ”1'9 + ”Up - a:;”LQ .
From the ellipticity of B,,, af-.-), for a constant C; >0
(3.10) Cl||v” ~"||1 o < < B,, Q( - u;;,v;,‘ - ﬂ;})

= IBm Q( h ~h) (f, )l

= |Bm ”('U,,,‘Uh' - ﬂh) B(up'r ﬁ;;)l

Hence, taking the infimum with respect to v} € S"O(Q) we have

(311) ”U— ~I‘I|1 )

IB(uh ,Uh _ uh) — B, Q('Uh vh uh)l

<C inf u— vt + o Yp P~ Tplly
= upest n(fl){“ pll [k = uhnl o }
The Lemma follows from taking w;} = v]',‘ - u;j € S;,‘, (). a

LEMMA 3.2. Let u,, w, € U,,(ﬁ) and § € Ly(§). Then, for all vl2 €

Gy

U,,(ﬁ), g, €U, (ﬁ) with 0<qg<p and r=d(m)—p—q>0 we have

(3.12) [ (G, u,,) - (gu,. u,,)m a |
S C{ ”g' “()‘—x,‘Q”uI’ - vq“(),ﬁ”ul’ - ’U(%“O'Q
+1G = 3l allEslloa luplleal

where C is independent of p, g and m.
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Proof. For any g, € U,.(ﬁ) we have

< l(gup-a;)ﬁ - (g}.u,,‘u,,)ﬁl +1 (.‘j:'uwu/’)() - (g’:'ul"ul’)'".ﬁ !
+ l (g:'upv a;)-,n_ﬁ - (gul” up)n}.,ﬁ | .

Thank to (K4),

0 for any v} € Uq(ﬁ), and

1l

(314)  (GhB)g — (Gvh T, 5
(6. 97)g ~ (570, 0), 0 = O forany vg € Ug(D)

Hence,
(315) | (grp.Up)g — (GrUpr Up) i |
< (GG, G - R)g — (@0 T — g
~o |

+ | (.arvéaﬂ; - vg)m,ﬁ = (Grtp, up — Ug)m,ﬁ .

By the Schwarz inequality we obtain

(3.16) (G Ty ~ v2)g — (G vg, Up — vD)5 |
~ ~ 1 - ~ 1
< (gl — v(})’ gr(up — vé));‘; (uy — U?puv - Ug)g%
< Clgello o 2T — il o 15 — 2l

Also, from (K2) we have

(317) |(Gvd Ty —v2),, 5 — (G T — 93),, 5]

1 1
o~ o~ 3 ~ o~ 3 2 Fonad S~ 2\ 2
S (g,.(u,, - ’U;), g1'(ul’ - Uf}))z ﬁ(ul’ - v‘zl’u” - ‘U%)m,ﬁ

™m,

1 1
—~ — N~ 3\ 2 — Y~ Ay 2
CNGi Mo, (T = V4 Tap = vg),,, (W — 03, 8 = V)

IN A

C1 o el — o8l a1 — 21,5 -
Hence, combining (3.16) and (3.17) we estimate

< CNG Mg @l = vally gllem = v3ll, 5 -

Similarly, since g € L.x,(ﬁ) we obtain

(3.19) (@8- Tp)g — (Grtp )5 ]
P
< (G- 6% G - 6@ @ o)l
< C “5 - 571 H()‘\.Q”TGH()‘Q”@”(LQ '
and
(3.20) WG i), o — (G, 113),, ol
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[

IA

((g,;‘ - f){"z\n (g/\l g)u,,) Q(ulh up) m Q

| 1
<C ”91' - gll(),oo_ﬁ(uw up)mﬁ (upv up);n‘ﬁ
< Clgr = gllo o plEpllo allEnllo -
The lemma follows from (3.18), (3.19), (3.20) and (3.13). O
As seen in Lemma 3.1, the last dependence of |ju — 171’,)‘“1 o is on the smoothness
of a. In this connection, we let
(3.21) Myq = = max, max laa; 1, 4.a:

where the subscript ¢ will be omitted when ¢ = 2. Then, we obtain the following
results which give an estimate for the last term of the right side in (3.8).

LEnMA 3.3. Let I, € G, be a quadrature rule defined on Qc R2?, which
satisfies d(m) —p—1> 0. Let u € H?(Q), a € HY(Q) and a, € HP(Q) for
i.3 = 1,2, such that X = min(a,p) > 2. Then. for any w € 5',, o(Q) and an
approximation u" which satisfies (2.17) we have

|B(u;;,w;,) mQ(ul)v p)l
lwpll, o

< C{ “QA-DM, + My, oo)(”u 3“1,9 + q—(a_l)h(”“1)||““a,n)
+r= =DMy lully o}

(3.22)

where q Is a positive integer such that 0 < ¢ <p and r=d(m)—-p—q¢>0.

Proof. For arbitrary w) € Sy () we have

(3.23) |B(u,,, — B a(ul w)) |

P

at oa) il o

... ou; Ow, .. Ou, 0w,
< C max max| - — ].
) m 2

ea;, — aaq,, —
- IJ(") ’ 81:] "oz, 8:1:,,

Qe i
For any @,, i,j=1,2and QF € J" we let g be any integer such that 0 < ¢ < p
and r = d(m) —p— g > 0. Then since aa,, € L5 (?), due to Leinina 3.2 with

R d . oM wh ~ - e
o, = Pry — (1,7 ;;) v = 35:?- L € U,(R) and g, = IT}(ad,,), we have
z ]

3o 0u" aw" 017;\1 31;,7; |
0 ‘“‘"aA’az] Q_ gz o, 5

/ 1 /T i /
< { ”n (aal )” ” au' B %’f ” ! O‘If': B 0H,lwl,' ”
- 770,000 z, or, yq 0, or

100

-28 -



H'(2)-NORM ERROR ANALYSIS OF THE /[P-VERSION UNDER NUMBERICAL QUADRATURE RULES

’LLI' ow /L
+llaa] - M (@a,)l 55" ll |
' L 0,00,0 81,

}.

Since aa,, € H ) with A = min(a, p) > 2 we obtain from lemma 2.2 and (2.14)
that

_ auh awh
(3.25)  flaa) - 1@an)ly,0all 5z > || Il =l

z, 00
< CrO-jaas), 5l - u;:nl,;, + nuul,ﬁ)nw,,ul,ﬁ
< Crm O My (fu ~ whl, g + il g ol gy
Further, it follows from lemma 2.1, lemma 2.2 and (2.14) that
320) PGy n 108 - 8y (O O,
Ly T 0,0 OFj T3 o,
C{lad - T2@E) o mn
+la@aylly, o, o Hlub ~ @), Qllw ~ Twh|
C{llaa; — MH@ay)ly o0,n + Mo oo}{”u - u"lll a
+llw - Héﬂllllﬁ}ﬂwp Mhw|
C{r=P V@l + Moo p{llE -

+q 7, g Hlwhll, 5
<C {,.—(,\—I)M,\ + Mo,oo}{”u - u',}”l‘nt
+q_(”'1)h(”"l)|lu||a,ng Hiwplly oz
where C is independent of p and gq.
Thus. substituting (3.25) and (3.26) in (3.24) we have

IN

1,

A

1,0

IA

7;'”1,6

(827) | B(w;,wy) = Bma(up wp)|
3uh Swh Oult  Owl,
< C Z m‘axl(aa” 5. Bx:) — (aaqa 69:]) 1
”’ i ) m, 0
<C Z { 7'_('\“'1)M,\+M0,r>o)(“u—u::"1,(zz
SV

gDl 00)
+r= DAL (lu - u;:lll,gt + ”u“],sz,ﬁ)}”wml,szf

C{r X DAL+ Moo )(fle = upll, o + 97 D0 D], )
wr O DAL ully o Hiwpllh o

The Lemina follows from dividing by [lwp ||, - OdJ

AN

Bv o direct application of Lemma 3.3 and (1.1) to Lemma 3.1 we obtain the
followmg main Theorem which gives an asymptotic. H1(£2)-norm estimate for the
rate of convergence under numerical quadrature rules
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Tueoren 3.4. Let I,,, € G, be a quadrature rule defined on Q0 ¢ R?, which
satisfies d(m)—-p—1> 0. We assume thatu € H°(?),a € H*(Q) anda,, € Hr(Q)
for 1.) = 1.2 such that A = min(a, p) > 2. Then, for any positive integer q such
that 0 < g < p, we have
(328) ”u - ’E::”LQ

S C{(r= M VMy + Moo )g™ DRk ull, g + 1~ "D My, o}
where p = min(p,0 — 1) and r =d(m) —p — q.

proof. Taking v}, € Sk () with an approximation u? of u which satisfies (2.17),
we obtain from Lemma 3.1 that

(329)  Ju—hl,

h .k ho, ok

< C{”u—u;;“ln‘i' sup |B(’U.p,‘wp) th,Q(up’wp)l }
! w#ES,’,‘_O(Q) ”wpnl‘n

Since 0 < ¢ < p it follows from (1.1) and Lemma 3.3 that the first term of the right

side in (3.29) is dominated by its last term. Hence, the proof is completed by a

direct application of Lemma 3.3 to (3.29).

a
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