Galois Groups of Subfactors
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Abstract

We review the subfactor theory in terms of bimodules and describe
the Galois group of subfactors through 1 dimensional bimodules ap-
pearing in some level of derived tower. Some examples of the Galois
groups are given in the case of fixed point algebras, crossed product
algebras, and their compositions.

1 Introduction

After A. Ocneanu ([13]) has introduced a paragroup as an invariant for the
classification of subfactors, the study of bimodules plays an important role
in the theory of subfactors, initiated by V. Jones ([7]).

The paragroup for N C M with finite Jones index is a grouplike object
which provides information about the position of the subfactor N in a type
I1, factor M. Indeed, a paragroup consists of a principal graph and a fam-
ily of anti-automorphisms, which requires the study of bimodules and their
intertwiners.

The first part of the paper is devoted to give an exposition on elementary
theory of subfactors in terms of bimodules. Based on this notion, we show
how the vertices of the principal graph is related to certain irreducible bi-
modules. Then we clarify the Galois groups for the inclusion by counting on
the dimensions of intertwiners spaces in Section 3. In particular, we examine
the result with various examples, like fixed point algebras, crossed product
algebras, and their compositions.

It is worth to mention that there are several equivalent ways of describing
paragroups, for example, Longo’s sector theory ([11]) which is an analogous
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to bimodule theory. While properly infinite factor cases require sector theory
naturally , we use a bimodule approach for the type /1, factor cases. Among
various materials about bimodules (sectors) associated to a subfactor, we
refer [5, 8, 9, 10, 11, 15] for the references.

Acknowledgement The author is greatly indebted to Professor H. Kosaki
and Y. Watatani for their hospitalities during her staying at Kyushu Univer-
sity.

2 Preliminaries

2.1 Bimodules

Let A and B be type II; factors. When B° denotes the opposite algebra of
B, an A-B bimodule X =4 Xp is defined as a Hilbert space X with normal
*-representations of A and B° which commute each other, equipped with
actions a - £ - b, where a € A,b € B and ¢ € X.

We say that two A-B bimodules X and Y are said to be unitary equiv-
alent, denoted by X 22 Y, if there exists a surjective isometry u : X — Y
commuting with the left and right actions, i.e. u(a- ¢ - b) =a-u(€)-b. The
categorical operations on the set of bimodules are given as follows.

1. The conjugate (contragredient) B-A bimodule p X} of 4Xp is the con-
jugate Hilbert space X*, with the action b - £ -a=(a*- £ b~

2. Let C be a type II; factor. Then the relative tensor product of A-
B bimodule 4 X5 and B-C bimodule Y over B is given by the A-C
bimodule AX RpB Yc.

We have (X*)* = X and (4,X ®p Ye) 2 Y*®p X* 4. An A-A bimodule X
is called self-conjugate if AX3 =4 Xy

The statistical dimension of the bimodule of X is defined as

d(X) = d(aXp) = \/dim(4X) - dim(Xp).

A bimodule X is said to have finite type if d(X) < oo. It is clear that
d(X) > 0 for nonzero bimodule X. Moreover, the dimension function d
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on finite type bimodules satisfies algebraic properties; d(X*) = d(X),d X ®
Y) =d(X)+d(Y) and d(X®Y) =d(X)d(Y). Alsod is a conjugacy invariant
function, i.e. when X Y, we have d(X) =d(Y).

Let Hom(X,Y) be the set of intertwiners from A-B bimodules X =, Xjp
toY =4 Yp which commute with right and left actions of A and B resp., that
is, a set of bounded linear operator 7' : X — Y satisfying T(a-¢-b) = a-T(€)-b.
When X = Y, we denote by End(X). Then End(X) = End(4Xp) =
A" N End(X) N (B°), which is a von Neumann algebra on X. A bimodule
X is called irreducible if End(X ) = CIx. When X is an A-B bimodule of
finite type, X can be decomposed into finitely many direct sum of irreducible
submodules as follows;

4Xp =Y ®m;X; with irreducible A-B bimodules Xi,
where m; = dimHom/(X, Xi) # 0. Note that X; = pX for a minimal projec-
tion p on X.

We end this section with the following useful observation ((10, 15]). Let A
be a type II; factor and L%*(A) the Hilbert space by GNS completion of A
with respect to the inner product defined by the trace. Then the normal
representations of A and A° play the left and right actions which provide the
bimodule structure to its Hilbert space 4L%*(A)4 with actions

a-&-b = aJgb*Jal | for a,be A& € L*(A),
where J4 denotes the modular convolution of L%(A).

Lemma 2.1 Let A and B be type 11 factors and 4 Xp and AYy the A-B
bimodules of finite type. Then the followings hold

1. Hom(X,Y) = Hom(Y*, X*)
2. Hom(X,Y) = Hom(4L*(A)4,Y ®p X*)

Theorem 2.2 (Frobenius reciprocity) Let A, B and C be type 11, factors
and 4 Xp,p Yo, 4 Ze the bimodules of finite types. Then the following vector
spaces are isomorphic ;

HO’ITL(AX ®p Yo, a4 Zc) = HO?TL(AZ ®c Y5,4 XB) = Hom(BX* ®a Zc,B Yc).
Proof. It follows from Lemma 2.1, using the contragredient bimodules. O

We often use this fact in the sense that they have the same dimension over

C.
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2.2 Bimodules associated to N C M

Let M be a type II; factor. Let L*(M) be the Hilbert space by GNS com-
pletion of M with respect to the inner product defined by the trace. The
normal representations of M and M° play the left and right actions which
provide the bimodule structure to its Hilbert space m L2 (M) with actions

n-&-m = nJym*Ju€ , for n,meM,{ € L*(M),

where Jy, denotes the modular convolution of L*(M).

For a given inclusion of factors N C M, we now associate a N-M bimodule.

By restricting left action to N, the associated bimodule is defined by H o

~vHuy = nL?(M) s, which becomes a N-M bimodule with the actions n-§-m
(n € N,m € M). Then conjugate M-N bimodule of H is given by H* =
mLl2(M)y = yL*(M)y = mHy, ie. the same Hilbert space L?*(M) with
restricted right action to N.

The Jones’s index of N C M is defined by [M : N] = dimyH, the cou-
pling constant of N on the Hilbert space L?*(M). When [M : N] < oo, the
statistical dimension of the N-M bimodule H is

d(H) = d(xHar) = \/dimy H dimHy = M : N]3.

Hence N-M bimodule H is of finite type when [M : N is finite. Moreover
the fact of End(H) = B(L*(H)) gives that

End(yHy) = N'(\(M°) () End(H) = N'(1M,

and so H is an irreducible M-N bimodule if and only if N is an irreducible
subfactor of M.

2.3 The graph invariants

For a pair of factors N C M, the basic construction M, for N C M is defined
as M; = End(Hy), the algebra of endomorphisms of M viewed as a right
N-module. Indeed,

M, = (N°) N End(H) = JuN'Jy D JyM'Jyy = M.
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When [M : NJ] < oo, M; is also type II; factor with [M; : M] = [M : N].
This fact enables us to iterate the basic constructions to obtain Jones tower
of II, factors;

N=M_ ;cM=MycM;CcM;C---.
The derived tower is an increasing sequence of relative commutants algebras
CI=NNNcNNMcNNM, cNnNM;C---.
The following observation provides the bimodule description of the derived
tower. Note that H ® H* = L*(M) ®y L*(M) =y L*(M)y, N-N bimodule

with left and right actions restricted to N. Due to the fact M; = L*(M) ®n
L?(M), we also see that

He H* ® H=y L*M)®y L*(M) » =~ L*(M1)n.
Inductively, we have
~L*(My)n = (H ®n H*)*, as N-N bimodues,
NL*(Mp)y = (H ®n H*)* @y H, as N-M bimodules.

Proposition 2.3 Lete N=M ; cM=M,CcM; C M, C -+ be the
Jones tower. Then the derived tower is given by the spaces of N-N and
N-M bimodule intertwiners. More precisely, for k > 0,

N' (Mgt = End(vL*(My)n) = End((H ® H*)*),
N’ nMQk = End(NL2(Mk)M) = End((H ® H*)k ® H)

Proof. Since N C M C My;1 and M C My C My are basic construc-
tions, we have Maky; = End(L*(My)n) and My, = End(L*(Mg))s). With
help of above observation, we have the results. O

Notice that N’ N M, are finite dimensional C*-algebras when d(H) < oo.
So the space of intertwiners is isomorphic to a multimatrix algebra as long
as Jones index is finite. In this case, each direct summand matrix algebra
appearing in N’ My is isomorphic to an irreducible N-N or N-M bimodule.
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‘The principal graph of N C M is defined by the Bratteli diagram of the collec-
tion of equivalent classes of irreducible N-N bimodules { X}, N-M bimodules
{Y'} appearing as components in End((H ® H*)*) and End((H® H*)*® H),
respectively. More explicitly, the principal graph of N C M is the bipartite
graph with even vertices indexed by N-N irreducible bimodules { X'} and odd
vertices indexed by N-M irreducible bimodules {Y'}, and dimHom(X®H,Y)
edges between a vertex X and a vertex Y.

When H is irreducible, the principal graph is connected. If the graph is finite,
then N C M is said to have finite depth. Otherwise, it is said to have infinite
depth. In other words, N C M has finite depth when there are only finitely
many equivalent classes of irreducible N-N, N-M bimodules appearing in
the decompositions of the derived tower.

The depth of N C M is defined by the longest distance from the vertex
indexed by N'NN = End(xL?*(N)y) to every vertices of the principal graph.

Remark 2.4 We can also proceed the same methods to obtain dual principal
graph, starting with the associated M — N bimodule H* = pL*(M)y. Then

M'NM; = End(H*) as M-N bimodules,

M'NM, = End(H* ® H) as M-M bimodules,
M'NM; = End(H*® H® H*) as M-N bimodules,

and so on.

3 Applications

3.1 Depth two subfactors

In this section, we describe the well-known structure of depth two subfactors
N C M in bimodule interpretation.

Definition 3.1 An irreducible subfactor N C M has depth two if N'NM; =
End(H ® H*® H) is a factor.

It is equivalent to dim(IN' N M;) = dimEnd(H ® H*) = [M : N] ([14]).
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Lemma 3.2 ([5, 12]) Let [ M : N] < oo and NNNM = CI. IfH®
H* =2 Y &m,; - X; where X/s are irreducible N-N submodules with m; =
dimHom(X;, H ® H*), then the followings are equivalent;

1. N C M have depth 2,
2. d(Xz) =m;.

Proof. Notice that H is an irreducible N-M binmodule due to N'N"M = CI.
(1 = 2) Let N C M have depth two. Then End(H ® H* ® H) is a factor.
Since H ® H* ® H contains H as an irreducible component, H ® H* @ H =
[M : N|H with help of the multiplicative property of dimension function d.

On the other hand, M : N|H = (HQ H*) @ H = 3 &mi(X; ® H), and
so we must have X; ® H = kH for some k. But Frobenius reciprocity implies
that

m; = dimHom(X;, HQH*) = dimHom(X;®H, H) = dimHom(kH,H) = k.

Hence we have X; ® H = m;H. With this fact, the multiplicative property
of the function d again gives d(X;) = m;.

(2 = 1) Let d(X;) = m;. Since [M : N] = d(H ® H*) = Y mid(X;) = X mi,
dimEnd(H ® H*) = dimHom(H® H*® H,H)
= > m;dimHom(X; ® H,H)
Zmi dimHom(X;,H ® H*)
= > mi=[M:N].
This completes the proof. O

Theorem 3.3 Let N C M have depth two. Then A = End(H ® H*) is a
[M : N] dimensional Hopf algebra acting outerly on M such that

M;=MxA or M=N x A°,
where A° = End(H* ® H) denotes the dual Hopf algebra of A.
Proof. See [12, 14]. O

Remark 3.4 There is always a canonical pairing between End(H ® H*)
and End(H* ® H), thanks to Frobenius reciprocity. In the case of depth two,
this pairing provides Hopf algebra structures to End(H ® H*), and its dual
End(H* ® H) as well.
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4 Galois groups of subfactors

Let N C M be factors of finite index with N’ "M = CI. The Galois group
for the pair is defined by

Gal(M,N) = {a € Aut(M) | a |y= id |v}.

When M, denotes the basic construction for N C M, the set of unitaries in
M, normalizing M is denoted by Ny (M;) = {u € U(M;) | uMu* = M}.
Recall (for example, see [2]) that

1. Gal(M, N) is a group of order less than or equal to [M : NJ,
2. Gal(M, N) is isomorphic to Ny (M;)/U(M).

In this section we focus on computation of Galois groups based on the
results in Chapter 3. For thsi we first discuss one dimensional M-M bimod-
ules, and then relate the Galois group to one dimensional M-Mbimodules
appearing at some level of derived tower.

4.1 Automorphisms in bimodules

Recall that the standard Hilbert bimodule H = 3;L?(M),, has dimemsion
1, equipped with the action m; - £ - my = myJymiJyé for my,my; € M
and £ € L?*(M). This provides a multiplicative unit for the relative tensor
product.

Let a be an automorphism of M. Then « gives rise to another M-M
bimodule a(*H)as (resp. ar(H*)ar) of dimension 1, which is the same Hilbert
space L?(M) equipped with the action

my - & - my = a(my)JymyJIumé,
(resp., my-&-my = myJya(ms)* Jyé),
where my, my € M.

It is clear that *H = #H if and only if there is a unitary u € M such that
a = (Adu)B on M, for a, 3 € Aut(M).

Lemma 4.1 ([5, 8]) Let M be a type I1; factor and o, € Aut(M). Then
we have the following ;
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1. *H =~ Ho,

2. (“H)* = H*,

3. *H®uy PH = PH, H*®y HP = H,
4. *H = H if and only if a € Inn(M).

Note that Lemma 4.1 implies that ®H is self-conjugate if and only if a® €
Inn(M). Finally we have the following ([10, 9]).

Proposition 4.2 A bimodule py X)s has d(X) = 1 if and only if there exists
an outer automorphism a € Aut(M) so that X = *H.

Proof. For z € X, let m-z = 7{(m)z , z-m = 7X(m)z be the left and right
representations of M on X, while M has a standard form on L?(M), with
left and right multiplications m - £ = m(m)§ , £ - m = m.(m)€ respectively,
for £ € L*(M).

It is enough to show the necessity. Assume that prX3s has d(pXy) = 1.
Then the coupling constant dimp X = dimXy = 1, and hence M has a
standard form on X as well. Therefore there is a unitary u : X — L*(M)
such that .(m) = urX (m)u*, for m € M.

Taking o = 7! o Adu o 7, we see that a € Aut(M) and m(a(m)) =

um (m)u*. Moreover, if z € X,

u(m -z - n) = umf (m)mX (n)z = m(a(m))uu*t.(n)uz = a(m)Jyn*Jy - uz.

Therefore, via u, X & *H as M-M bimodules. It now follows from Lemma
4.1 that « is not inner. O

4.2 Galois groups and grouplike elements

Let N C M have depth two. Then End(H* ® H) is a [M : N] dimensional
Hopf algebra. In this section, we study irreducible M-M bimodules of di-
mension 1 appearing in the Hopf algebra End(H* ® H). We call them the
grouplike elements.

Notice that if two irreducible A-B bimodules X and Y satisfy Hom(X,Y) #
0, then X 2Y as A-B bimodules.
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Proposition 4.3 ([10]) Let N'N\M = CI. Then the set of the grouplike ele-
ments in End(H*®H) forms a group under relative tensor product, with iden-
tity aHar. Moreover this group is isomorphic to the Galois group G(M,N).

Proof. If follows from Proposition 4.2 that there exists outer automorphism
a € Aut(M) corresponding to a 1 dimensional M-M submodule appearing
in End(H* ® H). Then the group structure on the set of grouplike elements
comes from Lemma 4.1 and Proposition 4.2.

Note that Frobenius reciprocity implies

0 # Hom(y*Huy, mH* ®n Hy) 2 Hom(vH ®yv “Hy, NHum)
~ Hom(yH ®u H* M, vHu) = Hom(y *Hum , NHn),

when y ®H), with restricted left action of a to N. But End(y*Hp) =
a(N) N M = C, we see that y *Hy is an irreducible N-M bimodule. Thus,
as N-M bimodules, y *Hyr &y Hyy, via a unitary v. Since v commute with
the left action, va(n) = nv for n € N, and hence (Adv)a|y = idy. This
completes the proof. O

Consequently, the Galois group G(M,N) is determined by 1 dimensional
M-M submodules appearing in End(H* ® H). Note that the condition
N’AM = CI in Proposition 4.3 is essential (for the counter example, see

[10]).
We are now going to calculate the Galois groups in various cases ([3, 4, 6, 10]).

Example 4.4 Let a finite group G act outerly on a type II; factor N via
a. Let M be the crossed product M = N x, G. Then the associated N-M
bimodule H =y L?(M)y is irreducible, due to the outerness of the action.
Moreover, the relative commutants are easily expressed as

NH ®p Hy =N L2(M)N = Z@geG ang(N)a

with mutually non-equivalent irreducible N-N bimodules *s L?(N) of dimen-

sion 1.
On the other hand,

mH* @y Hy =v M)y = Y, ©X],

oce€G*,j
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where G* denotes the set of representations of G. Here M-M bimodule X7 =
¥ ®@LH(M)EZ; is an irreducible M-M bimodule with linear basis defined by
€7, = Ygec 0i (g ug ®ug € H* @ H. Therefore X7 is one dimensional
bimodule if and only if o is one dimesional representation of G, so the Galois
group G(M, N) is group-isomorphic to the character group G ~ G/[G,G].

Example 4.5 Let N = M® C¢ M. Then H =y L2(M) ) is also irreducible
bimodule and

NH ® Hy =pe L*(M)ye = D ®oec- X7,
where G* denotes the set of representations of G. Also

mMH* ® Hy =um L2(M1)M =M LZ(M X o G)M = Z EBang(M).

geG

We see that each element g € G is associated with a 1 dimensional bimodule

@ [2(M), therefore Galois group g (M, N) is group-isomorphic to the group
G.

Example 4.6 Let finite groups K C G act outerly on a type II; factor P.
We consider N =P x K ¢ P x G = M. Let s = KsK be the K-K double
coset representatives in K\G/K. If welet K, = K NsK s71, then

NH® H;J =PxK L2(P X G’)PxK . Z Z @Y:”
s ieks
where i denotes the identity representation of K. On the other hand, if we
denote G = {0 € G*| 0|k =ik},
wmH* ® Hyr =pxc L*(M1)pxa = D ©Xo.
ocG
Since X, is one dimensional if and only if dim(c) = 1, the Galois group is

isomorphic to the characters of G vanishing on K.

Example 4.7 Under the same condition as Example 4.6, we now consider
N = PC c PX = M. Then the role of N-N, M-M bimodules are switched
in this case. i.e.,

NH ® Hy =pc L2(PK)PG = Z b Xo,

oeG
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and
MH* ® Hyp =pkK L2(M1)pK = Z Z @Yj,
5 ieK,
where i denotes the identity representation of K. Then irreducible bimodule
Y; has dimension one if and only if K = K,, or s € Ng(K); in other words,
those K, satisfying K = K, are paramatized by Ng(K)/K. Thus the Galois
group is isomorphic to Ng(K)/K.

Example 4.8 Let H and K be subgroups in a finite group G such that
HN K = {e} and HK be a group. Let o and B be the outer actions of
H and K respectively on a type II; factor P. We consider the subfactors
N=P? C P x,K =M. We know that N C M is irreducible and have
depth two in this case ([1, 3, 6]).

FiI‘St, let A =N LQ(P)p, B =p LZ(M)M, and X = A ®p B =N L2(M)M be
the associated irreducible N-M bimodule. Note that

A*® A=p L*(P) @y L*(P)p =p L*(P xg H)p = > GnenlBhnl,
and
B® B* =p L*(M) ®y L*(M)p =p L}(P x, K)p =) ®sexlas),

where [6] =p °L*(P)p with the action m-£-n = 6(m)Jpn*Jp¢ for n,m € P,
and an outer automorphism 6 of P.

For the Galois group, we need to compute the submodules of dimension one
appearing in X* ® X. Since

X'®X = M(B*®pA*)®n(A®B)y
= MB*®p () ®reulB]) ®p B u
= ) ®ner M(B* ®p [Bs] ®p B,

we have

End(X*®X) = Hom(X*®X,X*® X)
= Y ®gpen Hom(B* ®p [,) ®p B, B* ®p [B4] ®p B).
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On the other hand, for g,h € H,
Hom(B*®p|6,]®pB, B*®p|8:]®pB) = Hom([B,], B®pB*®p|6:]|®p BRpB*)

=2 ®srex Hom([B;], [a,] ® [Bn] ® [s]).

But Hom([B,], [a,] ® [Bs] ® [ax]) = 0 for some s,t € K if and only if g # sht
in Out(P). i, B* ®p [3,] ®p B and B* ®p [On] ®p B are disjoint if and
only if KgK # KhK. In other words, the double cosets KhK of K \G/K
parameterize nonequivalent bimodules B* ® P [Br] ®p B. Therefore we have

End(X*® X)= ) & End(B* ®p [, ®p B)

h=KhK

= ¥ Y oHom((8, 0] ® 6] ® [or)),
h=KhK stcK
where h = KhK € K\G/K is the representative of K-K double cosets in G.
But Hom([B4], [os] ® [Bh] ® [as]) # 0 if and only if ths = h,or t = hs~!p~1 ¢
hKh=' N K. Therefore

EndX*® X)= 3 > ®Hom([B),[a] ® [Bi] ® [aths-1n-1])

h=KhK se KNhKh—1

= Y @C,KnhKh,
h=KhK
the direct sum of twisted group algebras. Therefore the Galois group is

determined by one dimensional irreducible representations of K, = K N
hKh=! for all h K\G/K.

Lemma 4.9 x € K, has dimension 1 if and only if h € Ny(K), where
Nu(K) ={h € H|hKh™! = K} denotes the normalizer subgroup of K in
H.

Proof. For x € K,, note that

dz'mx-lKhKl_ _ 2 |K]
—‘—lKIQ = (dimy) K

Since |KhK| = |K[*/|Ky|, dimy = J|K7h|[ Thus dimx = 1 if and only if

|K| = |Kul, if and only if h € H satisfies hKA~! — K,orhe Ny(K). O

_57_



- - - - -

Jeong-Hee Hong

With Lemma 3.9, we finally have

GMN) = > &Cu(K)
heNu(K)

Now the mapping of h € Ny (K) into a map (x — x") determines an action
of Ng(K) on K, where x*(k) = x(h~"kh) for x € K. Hence the Galois group
G(M, N) is isomorphic to the semidirect product group K x Nu(K).
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