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Abstract

In conventional design practice, tension leg platform (TLPs) tethers are
designed to be highly tensioned. This high pre-tension is, however, a
significant restriction to the payload growth of TLPs.  This paper reports on
the second stage of an investigation into the vibrations of tethers at low
tension. Unlike conventional approaches for slender marine structures,
tethers are considered to be simultaneously subjected to time-varying axial
forces (parametric excitation) and lateral forces (forcing excitation). Therefore,
the tethers can be regarded as dynamic systems under combined excitation.
In order to solve this combined excitation problem, the governing partial
differential equation of lateral motion of a tether is reduced to a nonlinear
differential equation.  This nonlinear equation of combined excitation is
solved by using both Romberg’s method and the fourth-order Runge-Kutta
method together.

It is found that taking account of combined excitation is of little importance
compared to forcing excitation in the first instability region of the Mathieu
stability chart. However, from the second instability regions onwards, that is,
when the natural periods of tethers are equal or shorter than excitation
periods, combined excitation becomes significant. Therefore, since the
dynamic operating conditions of most tethers correspond to higher-order
instability regions, it is necessary to consider combined excitation in the
dynamic analysis of tethers.

The results of theoretical developments on combined excitation are applied
to example tethers and used to show that from the third instability regions
onwards, tether lateral response amplitudes increase with pre-tension
reduction, in the second instability region, the amplitudes do not change,
whereas, in the first instability region, the response amplitudes rather
decrease with pre-tension reduction.
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INTRODUCTION

A tension leg platform (TLP) is one of the most promising and potentially
cost effective solutions for hydrocarbon production in deeper waters. Figure 1
shows some existing and planned TLPs. Although the design characteristics
of those TLPs are different from each other, their design pre-tension criterion
is a common feature. These tethers are conventionally designed to be highly
tensioned so as not go slack in a hundred year extreme sea condition. This
aspect, however, causes a critical disadvantage of these TLP systems. In
other words, in order to keep such high pre-tension, deck vayloads of TLP
systems are significantly restricted. Actually, due to this deck payload
limitation, hydrocarbon field development is being carried out by using other
compliant structures such as guyed towers and semisubmersibles (see
Reference No. 16). Therefore, the possibility of increasing payload over
conventional designs needs to be investigated further by examining the
feasibility of reducing pre-tension in both existing and forthcoming TLP
designs.  There are other reasons also for studying low tension tethers -
these are that the failure probability of a tether subjected to maximum tension
is higher than that of one with minimum tension (Harding and Banon, 1989)
and that conventional environmental design conditions for tether pre-
tension are too conservatively considered (Mercier, 1989).

This paper reports the second stage of an investigation into the dynamics of
tethers with reduced pre-tension which would involve the tethers being
adequately tensioned in normal sea states but being slack for short durations
in a hundred year extreme wave trough. In this paper, the dynamic
behaviour of low tensioned tethers at such extreme sea conditions is studied.
Unlike conventional dynamic analysis of slender marine structures, tethers
here are modelled to be simultaneously subjected to time-varying axial forces
(called parametric excitation) and lateral forces (called forcing or external
excitation). The time-varying axial forces are considered to be imparted by
surface platform heave motion and the lateral forces are induced by platform
surge motion. These tethers are, therefore, regarded as a system under
combined parametric and forcing excitation.

In reality, although most slender marine structures as weil as TLP tethers
are usually simultaneously subjected to combined forcing and parametric
excitation, the two excitations have been separately considered. Most
dynamic analysis of slender marine structures have been concerned with
forcing excitation - see, for example, Young et al. (1978), Kirk et al. (1979) and
Triantafyllou et al. (1983). There have been also other investigations into
parametric excitation, i.e., the Mathieu stability problem of slender marine
structures by Hsu (1975), Strickland and Mason (1988), and Patel and Park
(1991).
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Compared to forcing or parametric excitation, ‘research on combined
excitation has only been recently carried out in the last two decades.
Systems under combined excitation can often arise in engineering or applied
science. Examples of these are beams which are simultaneously subjected to
transverse support motions and axial forces, mechanisms on vibrating
foundations, a pendulum whose support oscillates at an angle with the
vertical and a turbine blade connected to a whirling shaft. Most slender
marine structures such as marine risers and TLP tethers also fall under
these kinds of dynamic systems.

There has been some literature on combined excitation problems from Hsu
and Cheng (1974), Troger and Hsu (1979), HaQuang and Mook (1987) and
Plaut et al. (1990). However, there has not been previous work which is
concerned with structural vibrations including nonlinear hydrodynamic
damping or dynamic conditions corresponding to higher-order instability
region for tensioned slender marine structures. Therefore, it has been
motivated to examine the effect of combined excitation on the dynamic
response of a TLP tether which is a typical example of slender marine
structures under combined excitation.

THEORETICAL APPROACH

The tether of a TLP is considered as a straight, simply supported column of
uniform cross section. Figure 2 shows the tether model under combined
excitation and segment notation.  For this kind of marine structures, a
governing equation has been derived by Young and Fowler (1978) and
Chakrabarti and Frampton (1982). The axial tension variation along the
tether is taken to be constant, which is true for neuturally buoyant tethers.
Then, the governing equation of lateral motion of a tether can be written in
the form by adding time-varying axial forces to constant tension,

dy | 9y

=l===0

ot | at (1)
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T +El=%—(T,~ S cos 01) 53+ B,
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where M is the total mass per unit length of the tether segment, EI is the
tether flexural rigidity, To is constant axial tension, S is the time-varying
axial force amplitude, ® is the angular frequency of the surface platform
heave motion and B, = 0.5 Cp P« d,, where again Cp is a drag coefficient, d,
is the outer diameter of the tether and Pw is sea water density. The heave
motion of the surface platform which induces time-varying axial forces is
assumed to be sinusoidal for analytical simplicity. As can be seen later, the
lateral response amplitudes of tethers are limited to be small compared to the
tether length by the hydrodynamic damping force. Therefore, geometric
nonlinearity is not considered in this work.
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In order to obtain the response of lateral motion of the tether, the partial
differential equation (1) needs to be solved. The method of separation of
variable is used to reduce the partial differential equation to a simple
ordinary differential equation. By looking at Figure 2, it can be seen that
there exist two normal functions; one is a rigid body mode and the other are
sinusoidal elastic response modes. These mode shapes are based on the fact
that both ends of the tether are assumed to be pin jointed. Therefore,
according to time-dependent boundary condition theory (Mindlin and
Goodman 1950), an approximate solution to equation (1) can be assumed in
the form

yx) =h®) f + 3 £.00) sin 2E

)

where, fp(t) is an unknown function of the elastic response modes, which
should be obtained from the following analysis and h(t) is a prescribed lateral
movement of the top end of the tether imparted by the surface platform surge
motion.  Here h(t) needs to be incorporated with the time-varying axial

force, -5 cos wt. The initial boundary condition of the top end is assumed to
be in the middle point of surge motion and in the lowest position of heave
motion. In addition, the top end is assumed to rotate in the clockwise
direction by the wave-induced surface platform motion. Figure 3 shows the
profiles of combined forcing (top end lateral displacement) and parametric
(time-varying axial forces) excitation for clarification. Therefore h(t) can be
assumed to be

h(t) =-y,sinwt (3)

where y, and @ are the lateral displacement amplitude and the angular
frequency of the top end motion. The reason for the assumption of
sinusoidal motion is the same as that for the previous time-varying axial
forces.

Substituting equations (2) and (3) into equation (1) gives

2 {[EI (ri_n)‘+ (T,—=S cos (ot)(%—ic—)z] sin —%E}f,,

_x nnx df,
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Following Galerkin’s variational method, Equation (3) is multiplied
throughout by sin mnx/L and integrated over the length of the model, then
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In deriving the above equatjon, a mode coupling effect in the quadratic
nonfinear damping term is pe)gﬁ)ected and the following integrations are used.

L 2
I X sin mlicx dx = - r];rc(‘ n®
) ©)
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Rearranging equation (5) gives
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®, in equation (8) indicates the natural angular frequency of m-th mode of
the tether. The equation (7) represents vibrations of tethers subjected to
combined (forcing and parametric) excitation.

It is also useful to rewrite equation (7) in a nondimensional form with
respect to time by using t= (2/w)t. Then,

V Vi . mnxdf,,,l
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where & and q are parameters of the Mathieu equation and c is a
hydrodynamic damping related coefficient, and they are given in the form,
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If f, is obtained by solving equation (9), the lateral responses of the tethers
can be obtained by substituting f; into equation (2). Unfortunately it is
impossible to obtain an exact full analytical solution of equation (9).
Therefore, it is necessary to employ a numerical method.

Before carrying out the numerical analysis, it is worthwhile to examine the
structure of final equation (9). First, if the time-varying axial force, S cos wt, is
not considered, the resulting motion of the tethers becomes forced
vibrations. In other words, if S is zero, q is zero from equation (10), so
equation (9) becomes

2

d’f Vin . mnxdfml
+ 2 .
dz+8f cf l \/—y X COS I+2\/Esm L at
A/ 3¢ V3n . muxdf.]| . m7x 8Y,
sin dx= (-1~ —sm 27
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(11)

An analytical solution of equation (11) for forced vibrations can be obtained
by iteration. However, if the hydrodynamic damping effect is excluded, that
is, ¢ =0, the solution becomes of the form

D)™ 8 (- D72y, w’

~———% sin21 fa(t)= —5——=——sin ot
6- 4)m 1 or ) - e mn (12)

f.(0)=

This result corresponds to undamped forced vibrations of tethers. As can be
seen from equation(12), the amplitude of f,(t) depends on the top end
displacement amplitude, yo , excitation and natural angular frequency, ® and
®,, and mode number, m. A resonance occurs when the forcing angular

frequency, o, comes close to any of the natural frequencies, @, However
when the hydrodynamic damping force is considered, even if the external
frequency is equal to any of natural frequencies, the amplitudes of resonance
responses is limited as will be seen later.

Secondly, if the lateral motion of the top end is neglected, in other words, if
Yo is zero, equation (9) becomes

2

af,
d2

df . |df ., 0
dtldr T (13)
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Equation (13) is the nonlinear Mathieu equation and describes parametric
vibrations of tethers. An approximate analytical solution can be obtained for
small values of the parameters, 8 and q, by using perturbation techniques but
a numerical method is necessary for larger values of the parameters. The
response characteristics of the parametric excitation are known to be as
follows ;

(1) When hydrodynamic damping force is excluded, the solutions become
stable or unstable according to the combination of parameters, 8 and q as can
be seen from Figure 4.

(2) When hydrodynamic damping force is included, even unstable solutions
are limited.

(3) The response amplitudes of parametric vibrations rely on the natural and

excitation frequencies, @, and ®, the amplitude of parametric excitation, q
and hydrodynamic damping, c.

(4) The response frequency (®@r) of the equation (13) depends instability
regions and can be set such as ®r = (N/2) ®, where N indicates the ordinal
of instability regions. Thus the response frequencies in the higher instability
region become higher.

Meanwhile, combined excitation problem of equation (9) comprises the
characteristics of the above forcing and parametric excitations together.
Bearing in mind the characteristics of each vibration, the response pattern of
structures under combined excitation are to be obtained by a numerical

method for given values of §, q, ¢, L and y,.

NUMERICAL SOLUTION FOR EXAMPLE TETHERS

Equation (9) is solved using the fourth-order Runge-Kutta method with an
extension to take account of the integral term in equation (9).  Such an
extension can use either the trapezoidal rule, Simpson’s rule, the Romberg
method or Gaussian quadrature. It is known that Romberg’s method is in
many ways better than other methods since it is accurate, simple and
computer-oriented. Therefore, in this work, the Romberg method is  used
with the Runge-Kutta method for solution of equation (9).

Numerical text books such as Cuo (1972) give more details on the Runge-
Kutta method and the Romberg method. A computer program is
developed based on the fourth-order Runge-Kutta together with a subroutine
program which is based on the Romberg method for evaluating the integral
term at each time step. Since initial conditions do not influence the steady

state solutions of equation (9), the conditions of f;(0)=0.1 and df,(0)/d1=0.0
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are used. These initial values are taken to coincide with the combined
excitation condition shown in Figure 3.

For a case study to illustrate the results of this research, data for example
tethers are given in Table 1. These are typical of Snorre TLP tethers in the
case of 300m length. Three tether lengths of 300, 760 and 1500 m are chosen
and for convenience other dimensions such as pre-tension , tether diameter
and so on are taken to be identical. In the following analysis, 300, 760 and
1500 m of tether length will be called CASE I, II and III tethers respectively.
The dominant dynamic conditions of CASE I, II and III correspond to the
fifth, second and first instability regions of the Mathieu chart respectively as
can be seen from Table 2 and Figure 4. Table 2 is obtained from equations (8)
and (10) for the first vibration mode of each tether in Table 1.

Since this paper is concerned with the dynamics of TLP tethers at low
tension, it is natural to consider the tethers at the worst sea state. A
conventional design tension condition is assigned such that at such a worst
sea state, the tethers are about to become slack, which corresponds to the
amplitude of time-varying axial force being identical to tether pre-tension.
This work is, however, focused on the dynamic behaviour of tethers at the
tension reduced below conventional tension by increasing deck payload by
the same amount as the tension reduction. Here, the reduction percentage of
tether tension are chosen to be 5, 10 and 15 %. The amplitude of top end
lateral displacement, yg, is assumed to be 3.0 m which corresponds to RAO
(the ratio amplitude operator) being 0.2 for 15.0 m of wave amplitude. In
addition, since high mode responses are also important in the case of long
tethers, the elastic response modes of tethers are considered up to their
fourth mode in the calculation of f,.

RESULTS AND DISCUSSION

The analysis of combined (forcing and parametric) excitation presented in
this paper is more representative of the reality than conventional dynamic
analysis of such structures, where forcing and parametric excitation have
been separately considered. Therefore, comparisons between forcing,
parametric and combined excitation are first made for the dynamic responses
of tethers. The comparison is carried out for all CASE I, II and III tethers. The
tether tension condition is chosen to be the conventional design tension.

Figure 5(a) shows a comparison between lateral deflections at the mid-point
of the tether subjected to forcing, parametric and combined excitations for
CASE I (300 m length) tether. The dynamic condition of CASE I corresponds
to around the fifth instability regions of the Mathieu stability chart as can be
seen from Table 2. These results indicate that the response from combined
excitation is much larger than that from forcing or parametric excitation. An
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interesting point is that even though the responses of forcing or parametric
excitation are very small, those of combined excitation are relatively large.
This aspect means that the interaction between the two excitations is
significant in increasing the total responses of tether lateral displacements.
The response period of forcing excitation is still the same as the excitation
period. However, the response frequency of parametric is high and this
aspect is quite natural as mentioned earlier. In the case of combined
excitation, the response frequency is also high due to the included
parametric excitation effect.

Figure 5(b) illustrates the results for the CASE 1I (760 m length) tether whose
dynamic condition fall under the second instability region. Responses of
combined excitation are also much larger than those of forcing or parametric
excitation. The response periods of three excitations are all the same as that of
the 15 second excitation period. However, for CASE III (Figure 5(c)) which
corresponds to the first instability region, the response pattern is quite
different from CASE I and II, that is, the responses of combined excitation are
nearly identical to those of forcing excitation. = Meanwhile, the response
period of forcing and parametric excitations are respectively double and
identical to the 15 second excitation period. This result displays quite natural
characteristics of forcing and parametric excitations. In the case of combined
excitation, its response period is dependent upon the relative strength
between forcing and parametric excitations. In Figure 5(a), the response
period of the combined excitation is close to that of the forcing excitation.
However, according to a separate calculation, when the strength of the
forcing excitation, y0 is reduced to 1.0 m, the period of combined excitation
becomes double and closes to that of the parametric excitation as will be seen
later.

If the effect of combined excitation is not significant in the other regions as
well as in first instability region, the analysis of simple forced vibrations only
is satisfactory without dealing with the complex combined excitation
problem. However, as already mentioned, the dominances of the three
excitations are quite different each other according to instability regions in
which they occur. Therefore, more realistic combined excitation should be
considered in the dynamic analysis of tethers.

Figure 6 shows more clearly the relative importance of forcing , parametric
and combined excitations according to instability regions, i.e., with the values
of & varied. In this research, a hydrodynamic damping force is considered,
5o the responses are all limited, otherwise they are not limited at unstable
conditions. Bearing in mind that &= (2@./w)’ in equation (10), the response
pattern of forcing excitation is easily found in textbooks of vibration theory.
However those of parametric or combined excitation has been scarcely seen in
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open literatures. In the case of parametric excitation, as can be seen from
Figure 6(a) and Figure 4, relatively large responses occur in each instability
region. The largest magnitude exist in the centre of each instability region. By
comparing Figure 6 (a) and (b), it is seen that the response of parametric
excitation is more dependent upon high vibration mode effects than other
excitations.

Beyond the first instability , the responses of combined excitation are much
larger than those of forcing excitation, especially in the second and fourth
instability regions. In addition, the response amplitudes of combined
excitation are much larger than those of parametric excitation. This result
means the reduction of the lateral excursion of the top end by adopting a
supplemental lateral mooring system (see Figure 1(e)), can significantly
reduce the lateral response of the tethers. The reason is that if the top end
lateral excursion is reduced which means the strength of forcing excitation is
diminished, the dynamic system of tether lateral motion is more close to
parametric vibrations. As can be seen from Figures 5 and 6, the effect of
parametric excitation on the increase of tether lateral displacement is smaller
than that of forcing excitation in so far as S/T0 is equal or less than 1.0.

The results of Figures 5 and 6 clearly demonstrate that consideration of
combined excitation is necessary in the dynamic analysis of tethers.
Therefore, in the following investigation into the dynamics of low tension
tethers, only the combined excitation is considered. = Figure 7 illustrates
time histories of lateral displacements at the mid-point of example tethers
subjected to combined excitation at several tension conditions. Figure 7(a)
corresponds to the results of CASE I (300 m length) tether. At a
conventional design tension, that is, when time-varying axial force
amplitude is equal to the pre-tension, the maximum displacement is about 3
m. When 5, 10 and 15 % of the conventional tension are reduced, the
lateral displacements gradually increase to about 4, 53, and 6.7m
respectively.

Figures 7(b) and 7(c) show the time histories of the lateral displacements of
the CASE II (760 m length) and III (1500 m length) tethers respectively. By
looking at Figure 7(b) for the CASE II tether, it is found that the pre-tension
reduction does not affect the response amplitudes of tether lateral motion,
that is, the total displacement of lateral deflections at conventional design
tension is about 8 m and even at reduced pre-tension, the magnitude is
nearly identical to this value. The result for the CASE III tether (Figure 7(c))
shows a quite different response pattern from CASE I and II, that is, the
response amplitudes of lateral displacements decrease as the pre-tension
reduces. This aspect is very interesting for the designers of deep water TLP
systems. Another interesting aspect is that the response amplitude of CASE
III TLP tethers is smaller than CASE II TLP tethers. The largest magnitude of
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lateral displacement in steady state is about 5.5 m and happens at the
conventional design tension.

One of the purposes of this work is to examine the feasibility of operating
a TLP system at low tension to overcome the practical disadvantage of
relatively small deck pay load capability. Therefore, lateral displacements of
tethers are obtained for several reduced tension conditions. If the lateral
displacements of tethers are small at the reduced tension, low tension tethers
can be probably adopted. The reason is that due to the small response
amplitudes, the bending stress of tethers is small and coupling between
tethers and a surface platform is not significant. Moreover, even though the
pre-tension of the tethers is reduced, the heave motion of the surface
platform will not change because the pre-tension magnitude does not affect
the natural frequency of the surface platform heave motion. The tether pre-
tension reduction causes only the natural frequencies of surge motion of the
surface platform to be lower, which is then further away from the zone of
high energy of ocean waves.

Therefore, for the above CASE I and III tethers, a certain amount of pre-
tension can be reduced over conventional design tension. However, for
CASE 1II, the lateral displacements of tethers are somewhat large even at
conventional design tension, so careful consideration is necessary. If pre-
tension is reduced, the coupling between the surface platform and tether
motion becomes significant and the problem of tether collision will arise. It
is not easy to suggest a definite low tension criterion by considering only
combined excitation for CASE II. Therefore in addition to combined
excitation analysis, further research into coupling between the surface
platform and tether motions is necessary for the type of CASE II tethers, i.e.,
dynamic conditions of tethers corresponding to the second instability region.

The above results are based on the fact that the profile of combined excitation
is an exact sinusoid. If the combined excitation profile is random with a
narrow banded spectrum, the response amplitudes of lateral deflections are
likely to be even smaller. In other words, the above results give more a
conservative tension criteria. It is often argued that if tethers go slack, the
phenomenon of snap or snatch loading of the tethers occurs, which is
significant when the relative velocity of two ends is large. However, in the
case of tethers, the anticipated tension loss is not large enough and the
surface platform does not acquire the large velocity required for significant
snatch loading. Hydrodynamic drag also plays an important role in reducing
the adverse effects of snatch loading.

Although this work has clarified the importance of combired excitation in

the dynamic analysis of TLP tethers, there remain further works to be studied
such as : The effect of other phase lags between forcing and parametric
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excitation (here, n/2 is assigned, because the lag between heave and surge

motions of surface structure is usually close to n/2), the interaction between
low and high modes of structural vibrations, the effect of different values of
hydrodynamic damping and so on.

CONCLUSION

This work has been carried out to investigate the dynamic behaviour of
tension leg platform tethers at low tension. The purpose of this study is to
find any possibility of increasing deck pay load over conventional design
tension conditions.  In the theoretical developments, tethers are considered
to be simultaneously subjected to forcing excitation (top end lateral
movement) and parametric excitation (time-varying axial forces) for
simulating more realistic situation. Interesting features are observed
comparing results from combined excitation with those from forcing or
parametric excitation. In the first region of the Mathieu stzability chart, the
combined excitation is of little importance compared to forcing excitation.
However, from the second instability region onwards, the effect of combined
excitation become significant compared to forcing or parametric excitation.
Therefore, in the higher-order instability regions, even though one of the
forcing or parametric excitation effects is very small, the interaction of two
excitations is significant and the response of combined excitation is very
large. Since the dynamic conditions of most TLP tethers correspond to
higher-order instability regions, consideration of combined excitation is
essential for their dynamic analysis.

Applications of the combined excitation problem to some example tethers at
low tension provide some valuable results as follows ; (1) In the higher than
second instability region, the lateral response amplitudes gradually increase
with pre-tension reduction, (2) In the second instability region, the
amplitudes do not change, (3) In the first instability region, the response
amplitudes decrease with pre-tension reduction. In conclusion, there is a
possibility of conventional high tension of TLP tethers being able to be
reduced to a certain amount by replacing deck payload increase except for
tethers, of which dynamic conditions fall under the second instability region.
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Table 1. Data specification of example TLP tethers for case study

Description CASE 1 CASE II CASE I
Length, L 300 m 760 m 1500 m
Top tension, To 13.0x106 N

Flexural rigidity, EI 14.57x108 (N m?) — —
Inner diameter, d; 0.762 m & §
Outer diameter, d, 0.812 m < U
Dry mass 7263 (kg/md) o .
Damping coefficient, Cq 1.1 « o
Excitation period (2r/ w) 15 seconds % g)
Time-varying axial 13.0x106 N @ ©
force amplitude, S £ =
Added-mass coefficient 1.0 — Z
Amplitude of top 3.0 m <

end displacement, y,

Table 2. Values of parameters, 6 and q for CASEI, II and III tethers

CASE I (300 m) CASE I (760 m) | CASE HI (1500 m)
26.11 4.03 1.03
12.90 2.01 0.52
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K

L

Concret
(a)
b
(c)

Name (a)Hutton | (®Snorre | (YHeidrun [ (d)Jolliet | (e)Auger @)
Location | U. N. Sea | M. NSea |N. NSea |GoM GoM
Depth ()| 485 1017 1,150 1,760 2,860
Startup | 1985 Tate 1992 | 1995 1989 1993
Tan 70,147 116,600 171,600 18447 69,000
Design life| 20 yrs 20-25yrs |50 yrs 20 yrs 25yrs
TetherDia | 10in 3Bin 3in 24in 26in
N.B. GoM = Gulf of Mexico, U. N.Sea = UK. North Sea,

N. N.Sea = Norway North Sea, Ton is Displacement tonnes.
All TLPs are 4 columns except Hutton (6 columns).
No.of tethers/per column are all 12/3 except Snorre (16/4).

Figure 1. Comparison of existing and planned TLPs.

Yo sin @t

‘r IT.—S cos Wt

Figure 2. Tether model configuration (a) and Segment notation (b)
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Top end displacement and axial tension
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Figure 3. Input profile of combined forcing ( - yo sin wt) and parametric

(T - S cos wt) excitation.

20.00 B
N\ \ ]

18.00 AN L\ ] [ —

' X A% vl

P =

14.00 . — <

12.00 % /J

10.00 . (oD 7

8.00 — /

6.00" — (o

4.00 -
Ay

2.00

000 A\ T 17T T T~ T T T T T T T T T T 17T
0.00 400 800 1200 1600 20.00 2400 2800 3200 36.00 40.00

3

Figure 4. Mathjeu stability chart (Shaded areas are unstable)
A B line : Conventional design tension condition (Tq = S)
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(b} Only first mode is considered

Figure 6. Comparison of lateral displacements of tethers between
combined, forcing and parametric excitations with & variation.
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(b) Second instability region (L=760 m tether length)
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Figure 7. Comparisca of lateral displacements of tethers subjected to
combined excitation for conventionally designed pretension
and reduced pretension cases.
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