DUAL OPERATOR ALGEBRAS AND HEREDITARY PROPERTIES OF MINIMAL JOINT DILATIONS

Mi-Kyung Jang

1. Introduction

Let \mathcal{H} be a separable, infinite dimensional, complex Hilbert space and let $\mathcal{L}(\mathcal{H})$ be the algebra of all bounded linear operators on \mathcal{H} . A dual algebra is a subalgebra of $\mathcal{L}(\mathcal{H})$ that contains the identity operator $I_{\mathcal{H}}$ and is closed in the ultraweak operator topology on $\mathcal{L}(\mathcal{H})$. The theory of dual algebras is deeply related to the study of the problem of solving systems of simultaneous equations in the predual of a dual algebra (see [1], [3] and [4]). In particular, Exner-Jung [11] defined certain Hereditary properties concerning a minimal isometric dilation of a contraction operator T and obtained some characterizations for membership in the the class \mathbb{A}_{1,\aleph_0} which will be defined below. This give a motivation for this work.

Let T be a contraction operator in $\mathcal{L}(\mathcal{H})$ and let B_T be a minimal isometric dilation of T on \mathcal{K}_+ ,

$$\mathcal{K}_{+} = \bigvee_{n=0}^{\infty} B_{T}^{n} \mathcal{H},$$

with the Wold decomposition $B_T = S_T \oplus R_T$, where $S_T \in \mathcal{L}(\mathcal{U}_T)$ is the unilateral shift part and $R_T \in \mathcal{L}(\mathcal{R}_T)$ is the residual part. Suppose that $T \in \mathcal{L}(\mathcal{H})$ has a non-zero semi-invariant subspace \mathcal{M} (i.e, $\mathcal{M} \neq (0)$). For a compression $\widetilde{T} = T_{\mathcal{M}}$ of T to \mathcal{M} , we write a minimal isometric dilation of \widetilde{T} by $B_{\widetilde{T}} = S_{\widetilde{T}} \oplus R_{\widetilde{T}}$. Recall that a contraction T has property (\mathbf{H}) if, for any non-zero semi-invariant subspace \mathcal{M} for T, the minimal isometric dilation $B_{T_{\mathcal{M}}} \in \mathcal{L}(\widetilde{\mathcal{K}})$ of $T_{\mathcal{M}}$ which is obtained as a restriction $B_T | \widetilde{\mathcal{K}}$ with $\widetilde{\mathcal{K}} \in \mathrm{Lat}(B_T)$ satisfies $\mathcal{U}_{T_{\mathcal{M}}} \subset \mathcal{U}_T$. In addition, a contraction operator $T \in \mathbb{A}$ has property ($\widetilde{\mathbf{P}}$) if there exists $\mathcal{M} \in \mathrm{Lat}(T)$ such that $T | \mathcal{M} \in \mathbb{A}(\mathcal{M})$ and

This work was partially supported by KOSEF 94-1400-02-01-3 and the Basic Science Research Institute Program, Ministry of Education, 1996, BSRI-94-1401.

 $T|\mathcal{M}$ has property (\mathbf{P}). Then it follows from [I] that $T \in \mathbb{A}_{1,\aleph_0}$ if and only if T has property ($\widetilde{\mathbf{P}}$). Also one discuss other related hereditary properties in [Is]. In [I], one developed a functional calculus for a 2-tuple contractions. In [I], one introduced a class $\mathbb{A}_{m,n}^{(2)}$ of pairs of operators and obtained some results concerning minimal joint isometric dilations. So in this paper we extend the study of hereditary properties of single operators to 2-tuple operators.

In section 3 we will discuss certain Hereditary properties concerning minimal isometric dilations or minimal coisometric extensions of a pair of contractions. In section 3, we apply the hereditary properties to a theory of dual algebras.

2. Preliminaries

The notation and terminology employed here agree with those in [2], [4] and [19]. Suppose that \mathcal{A} is a dual algebra in $\mathcal{L}(\mathcal{H})$. Let $\mathcal{C}_1 = \mathcal{C}_1(\mathcal{H})$ be the trace class in $\mathcal{L}(\mathcal{H})$ and let ${}^{\perp}\mathcal{A}$ denote the preannihilator of \mathcal{A} in \mathcal{C}_1 . Let $\mathcal{Q}_{\mathcal{A}}$ denote the quotient space $\mathcal{C}_1/{}^{\perp}\mathcal{A}$. One knows that \mathcal{A} is the dual space of $\mathcal{Q}_{\mathcal{A}}$ and that the duality is given by

$$< T, [L] > = trace(TL), T \in A, [L] \in \mathcal{Q}_A.$$

For $T \in \mathcal{L}(\mathcal{H})$, let \mathcal{A}_T denote the dual algebra generated by T. For vectors x and y in \mathcal{H} , we write, as usual, $x \otimes y$ for the rank one operator in \mathcal{C}_1 defined by $(x \otimes y)(u) = (u, y)x$, $u \in \mathcal{H}$.

Throughout this paper, we write \mathbb{N} for the set of natural numbers. We shall denote by \mathbb{D} the open unit disc in the complex plane \mathbb{C} and we write \mathbb{T} for the boundary of \mathbb{D} .

For a Hilbert space K and any operators $T_i \in \mathcal{L}(K)$, i = 1, 2, we write $T_1 \cong T_2$ if T_1 is unitarily equivalent to T_2 .

For $1 \leq p \leq \infty$ we denote the usual Lebesgue function space by $L^p = L^p(\mathbb{T})$ and the usual Hardy space by $H^p = H^p(\mathbb{T})$. One knows that the preannihilator $^{\perp}(H^{\infty})$ of H^{∞} in L^1 is the subspace H^1_0 consisting of those functions g in H^1 for which analytic extension \tilde{g} to \mathbb{D} satisfies $\tilde{g}(0) = 0$ (cf. [14]). It is well known that H^{∞} is the dual space of L^1/H^1_0 .

Suppose that m and n are any cardinal numbers such that $1 \le m, n \le \aleph_0$. A dual algebra \mathcal{A} will be said to have property $(\mathbb{A}_{m,n})$ if every $m \times n$ system of simultaneous equations of the form $[x_i \otimes y_j] = [L_{ij}], \ 0 \le i < m, \ 0 \le j < n$, where $\{[L_{ij}]\}_{\substack{0 \le i < m \ 0 \le j < n}}$ is an arbitrary $m \times n$ array from \mathcal{Q}_A , has a solution $\{x_i\}_{0 \le i < m}, \ \{y_j\}_{0 \le j < n}$ consisting of a pair of sequences of vectors from \mathcal{H} . For brevity, we shall denote $(\mathbb{A}_{n,n})$ by (\mathbb{A}_n) . The class $\mathbb{A}(\mathcal{H})$ consists of all

those absolutely continuous contractions T in $\mathcal{L}(\mathcal{H})$ for which the Foiaș-Nagy functional calculus $\Phi_T: H^{\infty} \longrightarrow \mathcal{A}_T$ is an isometry. Furthermore, we denote by $\mathbb{A}_{m,n}(\mathcal{H})$ the set of all T in $\mathbb{A}(\mathcal{H})$ such that the algebra \mathcal{A}_T has property $(\mathbb{A}_{m,n})$. We write simply $\mathbb{A}_{m,n}$ for $\mathbb{A}_{m,n}(\mathcal{H})$ unless we mention otherwise.

Let $\mathcal{L}(\mathcal{H})_{comm}^{(2)}$ be the algebra of pairs of operators in $\mathcal{L}(\mathcal{H})$ which are commute. For $\mathbf{T} = (T_1, T_2) \in \mathcal{L}(\mathcal{H})_{comm}^{(2)}$, if there exists a 2-tuple $(S_1, S_2) \in \mathcal{L}(\mathcal{H})_{comm}^{(2)}$ for some Hilbert space $\mathcal{K} \supset \mathcal{H}$ such that \mathcal{H} is a semi-invariant subspace for S_j and $(S_j)_{\mathcal{H}} = T_j$, j = 1, 2. For $\mathbf{T} = (T_1, T_2) \in \mathcal{L}(\mathcal{H})_{comm}^{(2)}$, a joint dilation(extension) $\mathbf{S} = (S_1, S_2) \in \mathcal{L}(\mathcal{K})_{comm}^{(2)}$, where $\mathcal{K} \supset \mathcal{H}$, is said to be a joint unitary (resp. isometric, coisometric) dilation (extension) if each of S_j , j = 1, 2, is a unitary (resp. an isometry, a coisometry). If $\mathbf{U} = (U_1, U_2) \in \mathcal{L}(\mathcal{K})_{comm}^{(2)}$ is a joint dilation for $\mathbf{T} = (T_1, T_2) \in \mathcal{L}(\mathcal{H})_{comm}^{(2)}$ and $\mathcal{K}' \supset \mathcal{H}$ is a common invariant subspace for \mathbf{U} , then $\mathbf{U}|\mathcal{K}' = (U_1|\mathcal{K}', U_2|\mathcal{K}') \in \mathcal{L}(\mathcal{K}')_{comm}^{(2)}$ is a joint dilation of \mathbf{T} .

For $1 \leq p \leq \infty$, we denote by $L^p(\mathbb{T}^2)$ the Lebesgue spaces relative to normalized Lebesgue area measure on the torus \mathbb{T}^2 and by $H^p(\mathbb{T}^2)$ the Hardy space the subspaces of $L^p(\mathbb{T}^2)$ consisting of all the functions $f \in L^p(\mathbb{T}^2)$ such that the Foisson Kernel is analytic on \mathbb{D}^2 . We write for $L^1(\mathbb{T}^2)$ the subspace of $L^1(\mathbb{T}^2)$ consisting of those functions $f \in L^1(\mathbb{T}^2)$ such that Fourier coefficient $f(-n_1, -n_2) = 0$, for all $n_1, n_2 \in \mathbb{N}$.

The following provids a good relationship between $H^{\infty}(\mathbb{T}^2)$ and \mathcal{A}_{T_1,T_2} which is a dual algebra generated by T_1, T_2 .

Theorem 2.1. [7, Theorem 2.4.2] If $(T_1, T_2) \in ACC^{(2)}(\mathcal{H})$, then there is an algebra homomorphism $\Phi_{T_1,T_2}: H^{\infty}(\mathbb{T}^2) \longrightarrow \mathcal{A}_{T_1,T_2}$ with the following properties:

- (a) $\Phi_{T_1,T_2}(1) = I_{\mathcal{H}}$, $\Phi_{T_1,T_2}(\omega_1) = T_1$, $\Phi_{T_1,T_2}(\omega_2) = T_2$, where ω_1 and ω_2 denote the coordinate functions.
 - (b) $\|\Phi_{T_1,T_2}(h)\| \leq \|h\|_{\infty}$, for all $h \in H^{\infty}(\mathbb{T}^2)$.
- (c) Φ_{T_1,T_2} is weak*-continuous.(i.e., continuous when both H^{∞} and \mathcal{A}_{T_1,T_2} are given the corresponding weak*-topologies).
 - (d) The range of Φ_{T_1,T_2} is weak*-dense in \mathcal{A}_{T_1,T_2} .
 - (e) There is a bounded, linear, one-to-one map

$$\phi_{T_1,T_2}:\mathcal{Q}_{T_1,T_2}\longrightarrow L^1(\mathbb{T}^2)/L^1_0(\mathbb{T}^2)$$

with $\phi *_{T_1,T_2} = \Phi_{T_1,T_2}$.

(f) If Φ_{T_1,T_2} is an isometry, then it is a weak*-homeomorphism onto \mathcal{A}_{T_1,T_2} and ϕ_{T_1,T_2} is an isometry onto $L^1(\mathbb{T}^2)/L^1_0(\mathbb{T}^2)$.

We now define the classes $\mathbb{A}^{(2)}(\mathcal{H})$ and $\mathbb{A}_{m,n}^{(2)}(\mathcal{H})$. The analogous classes $\mathbb{A}(\mathcal{H})$ and $\mathbb{A}_{m,n}(\mathcal{H})$ have been a central topic of study in the theory of dual algebras (cf. [4]). Let $(T_1, T_2) \in ACC^{(2)}(\mathcal{H})$. We say that $(T_1, T_2) \in \mathbb{A}^{(2)}(\mathcal{H})$ if the funtional calculus is an isometry. Furthermore, for $n \in \mathbb{N}$, we say that $(T_1, T_2) \in \mathbb{A}_{1/n}^{(2)}(\mathcal{H})$ if $(T_1, T_2) \in \mathbb{A}^{(2)}(\mathcal{H})$ and \mathcal{A}_{T_1, T_2} has property $(\mathbb{A}_{1/n})$. Similarly, for m, n cardinal numbers with $1 \leq m, n\aleph_0$, we say that $\mathbb{A}_{m,n}^{(2)}(\mathcal{H})$ if $(T_1, T_2) \in \mathbb{A}^{(2)}(\mathcal{H})$ and \mathcal{A}_{T_1, T_2} has property $(\mathbb{A}_{m,n})$. As before, we write $\mathbb{A}_n^{(2)}(\mathcal{H})$ instead of $\mathbb{A}_{n,n}^{(2)}(\mathcal{H})$.

Recall that $T \in C_{\cdot 0}$ if $||T^{*n}x|| \longrightarrow 0$ for any $x \in \mathcal{H}$. We say $T \in C_0$. if $T^* \in C_{\cdot 0}$. And we denote that $C_{00} = C_0 \cap C_{\cdot 0}$.

3. Hereditary properties of joint dilations

Let $\mathbf{T} = (T_1, T_2) \in \mathcal{L}(\mathcal{H})_{comm}^{(2)}$ be a pair of contractions. A pair $(T_1, T_2) \in \mathcal{L}(\mathcal{H})_{comm}^{(2)}$ of contractions has a joint coisometric extension, and thus a minimal joint coisometric extension(cf.[,]). Let $\mathbf{B_T} = (B_1, B_2) \in \mathcal{L}(\mathcal{K})_{comm}^{(2)}$ be a minimal joint isometric dilation of $T = (T_1, T_2)$, so that $\mathcal{K} \supset \mathcal{H}$, \mathcal{H} is a common invariant subspace for B_j , and $B_j^*|\mathcal{H} = T_j^*$, j = 1, 2. Then \mathcal{K} has decomposition $\mathcal{K} = \mathcal{S}_j \oplus \mathcal{R}_j$, j = 1, 2, such that \mathcal{S}_j , \mathcal{R}_j are reducing subspaces for B_j j = 1, 2 respectively and $B_j|\mathcal{S}_j = \mathcal{S}_j^*$, and $B_j|\mathcal{R}_j = R_j$, j = 1, 2, where \mathcal{S}_j^* is backward shifts operator of some multiplicity and R_j is unitary operator j = 1, 2. Furthermore, it follows that $\mathbf{B_{T^*}} = (B_1^*, B_2^*) \in \mathcal{L}(\mathcal{K})_{comm}^{(2)}$ is a minimal joint coisometric extension of $\mathbf{T}^* = (T_1^*, T_2^*)$.

Let \mathcal{M} be a common invariant subspace for $\mathbf{T} = (T_1, T_2) \in \mathcal{L}(\mathcal{H})^{(2)}_{comm}$ with $\mathcal{M} \neq (0)$. Then a minimal joint isometric dilation $\mathbf{B_T} = (B_1, B_2)$ of \mathbf{T} is a joint isometric dilation of $\mathbf{T}|\mathcal{M} = (T_1|\mathcal{M}, T_2|\mathcal{M})$. Hence $\mathbf{T}|\mathcal{M}$ has a minimal isometric dilation $\mathbf{B_T}_{|\mathcal{M}} \in \mathcal{L}(\widetilde{\mathcal{K}})^{(2)}_{comm}$ with $\mathbf{B_T}_{|\mathcal{M}} = (B_1|\widetilde{\mathcal{K}}, B_2|\widetilde{\mathcal{K}})$ such that $\mathcal{M} \subset \widetilde{\mathcal{K}} \subset \mathcal{K}$ with $\widetilde{\mathcal{K}} \in \mathrm{Lat}(\mathbf{B_T})$ and $\mathbf{B_T}_{|\mathcal{M}} = \mathbf{B_T}|\widetilde{\mathcal{K}}$. Note that contrary to the one variable case, all minimal unitary dilation of a pair of contractions are not isometric. Hence we should define hereditary properties with a slight difference with one variable case as follows.

Definition 3.1. Suppose that $\mathbf{T} = (T_1, T_2) \in \mathcal{L}(\mathcal{H})^{(2)}_{comm}$ be a pair of contractions.

(1) **T** has property $(\mathbf{H}_1^{(2)})$ if there exists minimal joint isometric dilation $\mathbf{B}_{\mathbf{T}}$ of **T** such that for any non-zero common invariant subspace \mathcal{M} for

- $\mathbf{T} = (T_1, T_2)$ the minimal joint isometric dilation $\mathbf{B}_{\mathbf{T}|\mathcal{M}} = (B_1|\widetilde{\mathcal{K}}, B_2|\widetilde{\mathcal{K}}) \in \mathcal{L}(\widetilde{\mathcal{K}})^{(2)}_{comm}$ of $\mathbf{T}|\mathcal{M}$ obtained as a restriction $\mathbf{B}_{\mathbf{T}}|\widetilde{\mathcal{K}}$ with $\widetilde{\mathcal{K}} \in \mathrm{Lat}(\mathbf{B}_{\mathbf{T}})$ satisfies $\mathcal{S}_{T_1|\mathcal{M}} \subset \mathcal{S}_{T_1}$ and $\mathcal{S}_{T_2|\mathcal{M}} \subset \mathcal{S}_{T_2}$.
- (2) **T** has property $(\mathbf{H}_{1}^{(2)*})$ if there exists minimal joint coisometric extision $\mathbf{B}_{\mathbf{T}}$ of **T** such that for any non-zero common invariant subspace \mathcal{M} for $\mathbf{T} = (T_{1}, T_{2})$, the minimal joint coisometric extension $\mathbf{B}'_{\mathbf{T}|\mathcal{M}} = (B'_{1}|\widetilde{\mathcal{K}}, B'_{2}|\widetilde{\mathcal{K}}) \in \mathcal{L}(\widetilde{\mathcal{K}})^{(2)}_{comm}$ of $\mathbf{T}|\mathcal{M}$ obtained as a restriction $\mathbf{B}'_{\mathbf{T}}|\widetilde{\mathcal{K}}$ with $\widetilde{\mathcal{K}} \in \operatorname{Lat}(\mathbf{B}'_{\mathbf{T}})$ satisfies $\mathcal{S}_{T_{1}|\mathcal{M}} \subset \mathcal{S}_{T_{1}}$ and $\mathcal{S}_{T_{2}|\mathcal{M}} \subset \mathcal{S}_{T_{2}}$.
- (3) **T** has property $(\mathbf{H}_2^{(2)})$ if there exists minimal joint isometric dilation $\mathbf{B}_{\mathbf{T}}$ of **T** such that for any non-zero common invariant subspace \mathcal{M} for $\mathbf{T} = (T_1, T_2)$ the minimal joint isometric dilation $\mathbf{B}_{\mathbf{T}|\mathcal{M}} = (B_1|\mathcal{M}, B_2|\mathcal{M}) \in \mathcal{L}(\widetilde{\mathcal{K}})_{comm}^{(2)}$ of $\mathbf{T}|\mathcal{M}$ obtained as a restriction $\mathbf{B}_{\mathbf{T}}|\widetilde{\mathcal{K}}$ with $\widetilde{\mathcal{K}} \in \mathrm{Lat}(\mathbf{B}_{\mathbf{T}})$ satisfies $\mathcal{R}_{T_1|\mathcal{M}} \subset \mathcal{R}_{T_1}$ and $\mathcal{R}_{T_2|\mathcal{M}} \subset \mathcal{R}_{T_2}$.
- (4) **T** has property $(\mathbf{H}_{2}^{(2)*})$ if there exists minimal joint coisometric extension $\mathbf{B_T}$ of **T** such that for any non-zero common invariant subspace \mathcal{M} for $\mathbf{T} = (T_1, T_2)$, the minimal joint coisometric extension $\mathbf{B'_{T|\mathcal{M}}} = (B'_1|\widetilde{\mathcal{K}}, B'_2|\widetilde{\mathcal{K}}) \in \mathcal{L}(\widetilde{\mathcal{K}})^{(2)}_{comm}$ of $\mathbf{T}|\mathcal{M}$ obtained as a restriction $\mathbf{B'_{T}}|\widetilde{\mathcal{K}}$ with $\widetilde{\mathcal{K}} \in \operatorname{Lat}(\mathbf{B'_T})$ satisfies $\mathcal{R}_{T_1|\mathcal{M}} \subset \mathcal{R}_{T_1}$ and $\mathcal{R}_{T_2|\mathcal{M}} \subset \mathcal{R}_{T_2}$.

We denote $C_{\cdot 0}^{(2)}$ is the set of pairs (T_1, T_2) of operators on \mathcal{H} with $T_i \in C_{\cdot 0}(\mathcal{H})$ i = 1, 2.

Proposition 3.2. Suppose that $\mathbf{T} = (T_1, T_2) \in C_0^{(2)}(\mathcal{H})$. Then \mathbf{T} has property $(\mathbf{H}_1^{(2)})$.

Proof. Since $T_i \in C_{\cdot 0}$, B_{T_i} is a unilateral shift on \mathcal{H}_i . Let us consider a joint isometric dilation $\mathbf{B} := (B_{T_1} \oplus B_{T_2}, B_{T_1} \oplus B_{T_2})$ in $\mathcal{L}(\mathcal{H}_1 \oplus \mathcal{H}_2)_{comm}^{(2)}$ of \mathbf{T} .

Then $\mathbf{B} \in C_{0}^{(2)}$ and there exists a minimal joint isometric dilation $\mathbf{B_{T}}$ of \mathbf{T} such that $\mathbf{B}|\mathcal{K} = \mathbf{B}_{T} := (B'_{T_{1}}, B'_{T_{2}})$. Since $\mathbf{B} \in C_{0}^{(2)}$, $\mathbf{B_{T}} \in C_{0}^{(2)}$. Consider $\mathcal{M} \in \mathrm{Lat}(\mathbf{T})$ with $\mathbf{T}|\mathcal{M} := (T_{1}|\mathcal{M}, T_{2}|\mathcal{M}) \in C_{0}^{(2)}$. Then since there is no unitary part, \mathbf{T} has property $(\mathbf{H}_{1}^{(2)})$. \square

Example 3.3. Let U be a bilateral shift and let consider $\mathbf{U}=(U,U)$. Then $\mathbf{U}=\mathbf{B}_{\mathbf{U}}$ and $\mathcal{S}=(0)$. Let $\mathcal{M}\in\mathrm{Lat}(\mathbf{U})$. Then $\mathbf{U}|\mathcal{M}=\mathbf{B}_{\mathbf{U}}|\mathcal{M}$ and $\widetilde{\mathcal{S}}=\mathcal{M}$. Hence $\widetilde{\mathcal{S}}$ can not be contained in \mathcal{S} and \mathbf{U} does not have property $(\mathbf{H}_1^{(2)})$.

Theorem 3.4. Every pair of contractions $\mathbf{T} = (T_1, T_2) \in \mathcal{L}(\mathcal{H})_{comm}^{(2)}$ has

- (1) property $(\mathbf{H}_{1}^{(2)*})$,
- (2) property $(\mathbf{H}_2^{(2)})$,
- (3) property $(\mathbf{H}_{2}^{(2)*})$.

Proof. Let $\mathbf{T} = (T_1, T_2) \in \mathcal{L}(\mathcal{H})^{(2)}_{comm}$ and \mathcal{M} be a nontrivial comman invariant subspace of \mathbf{T} .

(1) Let $\mathbf{B}_{\mathbf{T}}' = (B_{T_1}', B_{T_2}')$, be the Ando coismetric extension of \mathbf{T} and let $\mathbf{B}_{\mathbf{T}}' = (B_{T_1}', B_{T_2}')$ be a minimal joint coisometric extension of $\widetilde{\mathbf{T}} = (\widetilde{T}_1, \widetilde{T}_2)$ such that $\widetilde{\mathcal{K}} \subset \mathcal{K}$. Then

$$B'_{T_i} = S^*_{T_i} \oplus R^*_{T_i} \in \mathcal{L}(\mathcal{S}_{T_i} \oplus \mathcal{R}_{T_i}), i = 1, 2$$

and

$$B'_{\widetilde{T}_{i}} = S^{*}_{\widetilde{T}_{i}} \oplus R^{*}_{\widetilde{T}_{i}} \in \mathcal{L}(S_{\widetilde{T}_{i}} \oplus \mathcal{R}_{\widetilde{T}_{i}}), \qquad i = 1, 2$$

$$\cong \begin{pmatrix} T_{i} | \mathcal{M} & * \\ 0 & * \end{pmatrix}$$

relative to a decomposition $\mathcal{M} \oplus (\widetilde{\mathcal{K}} \ominus \mathcal{M})$.

We now claim that $\mathcal{S}_{\widetilde{T}_i} \subset \mathcal{S}_{T_i}$, i = 1, 2. Let $x \in \mathcal{S}_{\widetilde{T}_i}$ and let $x = s \oplus r \in \mathcal{S}_{T_i} \oplus \mathcal{R}_{T_i}$. Since $B'_{\widetilde{T}_i} = B'_{T_i} | \widetilde{\mathcal{K}}$, by minimality where $\widetilde{\mathcal{K}} \in \text{Lat}(B'_{T_i})$, we have

$$||S_{\widetilde{T}_{i}}^{*n}x||^{2} = ||B_{\widetilde{T}_{i}}^{'n}x||^{2} = ||B_{T_{i}}^{'n}x||^{2}$$

$$= ||(S_{T_{i}}^{*n} \oplus R_{T_{i}}^{*n})(s \oplus r)||^{2}$$

$$= ||S_{T_{i}}^{*n}s||^{2} + ||R_{T_{i}}^{*n}r||^{2}$$

$$= ||S_{T_{i}}^{*n}s||^{2} + ||r||^{2}$$

let $n \to \infty$, r = 0. Therefore $x \in \mathcal{S}_{T_i}$, i = 1, 2. Hence **T** has property $(\mathbf{H}_1^{(2)*})$. (3) Using notation in the proof of $(\mathbf{H}_{1\cdot}^*)$. We claim that $\mathcal{R}_{\widetilde{T}_1} \subset \mathcal{R}_{T_1}$. Let $x \in \mathcal{R}_{\widetilde{T}_1} \subset \mathcal{K} = \mathcal{S}_{T_1} \oplus \mathcal{R}_{T_1}$ and let $x = s \oplus r \in \mathcal{S}_{T_1} \oplus \mathcal{R}_{T_1}$. Then we have

$$||s||^{2} + ||r||^{2} = ||x||^{2} = ||\mathcal{R}_{\widetilde{T}_{1}}^{*n}x||^{2} = ||B_{\widetilde{T}_{1}}^{'n}x||^{2}$$

$$= ||B_{T_{1}}^{'n}x||^{2} = ||S_{T_{1}}^{*n}s||^{2} + ||R_{T_{1}}^{*n}r||^{2}$$

$$= ||S_{T_{1}}^{*n}s||^{2} + ||r||^{2}.$$

Let $n \to \infty$, since $||S_{T_1}^{*n}s|| \to 0$, s = 0. Therefore $\mathcal{R}_{\widetilde{T}_1} \subset \mathcal{R}_{T_1}$. Similarly $\mathcal{R}_{\widetilde{T}_2} \subset \mathcal{R}_{T_2}$. Hence **T** has property $(\mathbf{H}_2^{(2)*})$.

(2) Let $\mathbf{B_T} \in \mathcal{L}(\mathcal{K})^{(2)}_{comm}$ be the Ando minimal joint isometric dilation of \mathbb{T} and $\mathbf{B_{\widetilde{T}}} = \mathbf{B_{T|\mathcal{M}}} \in \mathcal{L}(\widetilde{\mathcal{K}})^{(2)}_{comm}$ be the minimal joint isometric dilation of and $\widetilde{\mathbf{T}} = \mathbf{T}|\mathcal{M} = (T_1|\mathcal{M}, T_2|\mathcal{M})$ such that $\mathbf{B_T}|\widetilde{\mathcal{K}} = \mathbf{B_{\widetilde{T}}}$ and $\widetilde{\mathcal{K}} \in \mathrm{Lat}(B_1, B_2)$. We have $B_{T_i} = S_{T_i} \oplus R_{T_i} \in \mathcal{L}(S_{T_i} \oplus \mathcal{R}_{T_i})$ and $B_{\widetilde{T}_i} = S_{\widetilde{T}_i} \oplus R_{\widetilde{T}_i} \in \mathcal{L}(S_{\widetilde{T}_i} \oplus \mathcal{R}_{\widetilde{T}_i})$. We shall claim $\mathcal{R}_{\widetilde{T}_i} \subset \mathcal{R}_{T_i}, i = 1, 2$. Let $x \in \mathcal{R}_{\widetilde{T}_1}$ and let $x = s \oplus r \in \mathcal{S}_{T_1} \oplus \mathcal{R}_{T_1}$. Since $B_{\widetilde{T}_1} = B_{T_1}|\widetilde{\mathcal{K}}$,

$$B_{T_1}^{*n} = \begin{pmatrix} B_{\tilde{T}_1}^{*n} & 0\\ A_n & * \end{pmatrix}$$

relative to a decomposition $\widetilde{\mathcal{K}} \oplus (\mathcal{K} \ominus \widetilde{\mathcal{K}})$ for any $n \in \mathbb{N}$.

$$||x||^{2} \leq ||x||^{2} + ||A_{n}x||^{2} = ||R_{\widetilde{T}_{1}}^{*n}x||^{2} + ||A_{n}x||^{2}$$

$$= ||R_{\widetilde{T}_{1}}^{*n}x \oplus A_{n}x||^{2} = ||B_{T_{1}}^{*n}x||^{2}$$

$$\leq ||x||^{2}.$$

Therefore $||x|| = ||B_{T_1}^{*n}x||$ for any $n \in \mathbb{N}$. And we have

$$||s||^{2} + ||r||^{2} = ||x||^{2}$$

$$= ||B_{T_{1}}^{*n}x||^{2} = ||S_{T_{1}}^{*n}s||^{2} + ||R_{T_{1}}^{*n}r||^{2}$$

$$= ||S_{T_{1}}^{*n}s||^{2} + ||r||^{2}.$$

Letting $n \to \infty$, $||S_{T_1}^{*n}s|| \to 0$, s = 0. Therefore $x \in \mathcal{R}_{T_1}$. So $\mathcal{R}_{\widetilde{T}_1} \subset \mathcal{R}_{T_1}$. Similarly $\mathcal{R}_{\widetilde{T}_2} \subset \mathcal{R}_{T_2}$. Hence **T** has property $(\mathbf{H}_2^{(2)})$. \square

4. DUAL ALGEBRAS GENERATED BY 2-TUPLE CONTRACTIONS

Lemma 4.1. If $\mathbf{T} = (T_1, T_2) \in \mathbf{A}_{1,1}^{(2)}(\mathcal{H})$, then for any positive integer n, there exists $\mathcal{M}_n \in Lat(\mathbf{T})$ and $\{e_k^{(n)}\}_{k=1}^n \subset \mathcal{M}_n$ such that

$$e_k^{(n)} \in Ker(T_i|\mathcal{M}_n)^{*k} \ominus Ker(T_i|\mathcal{M}_n)^{*k-1}$$

and

$$[e_k^{(n)} \otimes e_k^{(n)}] = [C_0]_{\mathbf{T}}$$

 $k=1,\cdots n.$

Proof. Let us consider the operator $A_j \in \mathcal{L}(\mathbb{C}^n), j = 1, 2$ such that

$$A_j = \begin{pmatrix} 0 & 1 & & & \\ & 0 & \ddots & & \\ & & \ddots & 1 \\ & & & 0 \end{pmatrix}.$$

Then it is easy to show that A_j has a cyclic vector By [17. Theorem 3.3.1], there exist $\mathcal{M}_n, \mathcal{N}_n \in \operatorname{Lat}(\mathbf{T})$ with $\mathcal{M}_n \supset \mathcal{N}_n \dim(\mathcal{M}_n \ominus \mathcal{N}_n) = n$ such that $A_i' = T_{i\mathcal{M}_n} \ominus \mathcal{N}_n$ is similar to A_i . Let $X : \mathcal{M}_n \ominus \mathcal{N}_n \longrightarrow \mathcal{H}$ invertible operator with $A_i = XA_i'X^{-1}$ for i = 1, 2, then $XA_i' = A_iX$ and then $X^*A_i^* = A_i'^*X^*$. Define $e_k^{(n)} = X^*u_k$, where u_k . Then

$$(A_i^{'*})^j e_k^{(n)} = A_i^{'*j} X^* u_k = X^* A_i^{*j} u_k.$$

If $j \leq k$, then $X^*A_i^{*j}u_k = 0$. Since X^* is one to one, if $j \leq k$, then $X^*A_i^{*j}u_k \neq 0$, for i = 1, 2. Hence we have

$$e_k^{(n)} \in \operatorname{Ker}(A_i^{'*k})^{*k} \ominus \operatorname{Ker}(A_i^{'*k})^{*k-1}$$

Moreover, since

$$(T_i|\mathcal{M}_n)^* = \begin{pmatrix} * & 0 \\ * & A_i^{'*k} \end{pmatrix},$$

we have

$$e_k^{(n)} \in \operatorname{Ker}(T_i | \mathcal{M}_n^*)^k \ominus \operatorname{Ker}(T_i | \mathcal{M}_n^*)^{k-1}.$$

Thus, for $h \in H^{\infty}(\mathbf{T})$,

$$h(T_1, T_2) = \begin{pmatrix} * & * & * \\ 0 & D & * \\ 0 & 0 & * \end{pmatrix},$$

where D is the scalar operator (with respect to basis $\{u_n\}$) defined by $De_k^{(n)} = h(\lambda)e_k^{(n)}$, therefore

$$< h(T_1, T_2)e_k^{(n)}, e_k^{(n)} > = h(\lambda).$$

Then by definition of

$$[C_{\lambda}]_{\mathbf{T}} = [e_k^{(n)} \otimes e_k^{(n)}]_{\mathbf{T}}, k = 1, \dots n.$$

Hence the proof is complete. \square

Let \mathcal{A} be a dual algebra, for $0 \leq \theta < \gamma \leq 1$. We recall from [] that $\mathcal{E}_{\theta}^{r}(\mathcal{A})$ is the set of all [L] in $\mathcal{Q}_{\mathcal{A}}$ such that there exist sequences $\{x_i\}$ and $\{y_i\}$ in the unit ball of \mathcal{H} satisfying

$$\limsup_{i\to\infty}\|[L]-[x_i\otimes y_i]\|\leq\theta$$

and

$$||[x_i \otimes z]|| \longrightarrow 0, \quad \forall z \in \mathcal{H}.$$

Furthermore, for some $0 \leq \theta < \gamma \leq 1$, \mathcal{A} has property $E_{\theta,\gamma}^r$ if $\overline{aco}(\mathcal{E}_{\theta}^r(\mathcal{A}))$ $\supset B_{0,\gamma} = \{[L] \in Q : ||[L]|| \leq \gamma\}.$

Theorem 4.2. Suppose $\mathbf{T} = (T_1, T_2) \in \mathbf{A}_{1,1}^{(2)}(\mathcal{H})$ has property $(\mathbf{H}_1^{(2)})$. Then there exist $\{f_j\}_{j=1}^{\infty}$ of unit vectors in \mathcal{H} satisfying

$$[f_j\otimes f_j]=[C_0]_{f T}$$

and

$$||[f_j \otimes w_1]_{T_1}|| + ||[f_j \otimes w_2]_{T_2}|| \longrightarrow 0 \qquad \forall w_i \in \mathcal{H}, \qquad i = 1, 2.$$

Proof. Let $\mathbf{B_T} = (B_{T_1}, B_{T_2})$ be a minimal joint isometric dilation of $\mathbf{T} = (T_1, T_2)$ has property $(\mathbf{H}_1^{(2)})$, and let $\mathbf{B_T^*} = (B_{T_1}^*, B_{T_2}^*)$ be a minimal joint coisometric extension of $T^* = (T_1^*, T_2^*)$. Suppose $B_{T_1}^* = S_{T_1}^* \oplus R_{T_1}^*$, $B_{T_2}^* = S_{T_2}^* \oplus R_{T_2}^*$, where S_{T_1}, S_{T_2} are unilateral shifts on S_{T_1} and S_{T_2} , respectively and R_{T_1}, R_{T_2} are unilateral operator on \mathcal{R}_{T_1} and \mathcal{R}_{T_2} , respectively. By Lemma 4.1, for each positive integer n. There exist $\mathcal{M}_n \in \operatorname{Lat}(\mathbf{T})$ and orthonormal set $\{e_k^{(n)}\}_{k=1}^n \subset \mathcal{M}_n$ such that

(6-a)
$$e_k^{(n)} \in \operatorname{Ker}(T_i | \mathcal{M}_n)^{*k}$$

and

(6-b)
$$[e_k^{(n)} \otimes e_k^{(n)}] = [C_0]_{\mathbf{T}},$$

 $k = 1, \dots, i = 1, 2$. Let $\mathbf{B}_n = (B_{T_1|\mathcal{M}_n}, B_{T_2|\mathcal{M}_n}) \in \mathcal{L}(\widetilde{\mathcal{K}}_n)_{comm}^{(2)}$ be a minimal joint isometric dilation of $\mathbf{T}|\mathcal{M}_n = (T_1|\mathcal{M}_n, T_2|\mathcal{M}_n) = (T_1|\mathcal{M}_n, T_2|\mathcal{M}_n)$ obtained as $\mathbf{B}_{\mathbf{T}}|\widetilde{\mathcal{K}}_n$ for some $\widetilde{\mathcal{K}}_n \in \mathrm{Lat}(\mathbf{B}_{\mathbf{T}})$ and then $\mathbf{B}_n^* = (B_{T_1|\mathcal{M}_n}^*, B_{(T_2)|\mathcal{M}_n}^*)$ be the minimal joint coisometric extension of

$$(\mathbf{T}|\mathcal{M}_n)^* = (T_1|\mathcal{M}_n^*, T_2|\mathcal{M}_n^*).$$

Suppose

(6-c)
$$B_{T_1|\mathcal{M}_n}^* = S_{T_1|\mathcal{M}_n}^* \oplus R_{T_1|\mathcal{M}_n}^* \text{ and } B_{T_2|\mathcal{M}_n}^* = S_{T_2|\mathcal{M}_n}^* \oplus R_{T_2|\mathcal{M}_n}^*$$

where $S_{T_1|\mathcal{M}_n}, S_{T_2|\mathcal{M}_n}$ are unilateral shifts on $\mathcal{S}_{T_1|\mathcal{M}_n}, \mathcal{S}_{T_2|\mathcal{M}_n}$, respectively. By (6-a) and (6-c), $e_k^{(n)} \in \mathcal{S}_{T_i|\mathcal{M}_n}, k = 1, \dots, i = 1, 2$. Since T has property $(\mathbf{H}_1^{(2)}), \mathcal{S}_{T_i|\mathcal{M}_n} \subset \mathcal{S}_{T_i} \ \forall n \ \forall i$, then $e_k^{(n)} \in \mathcal{S}_{T_i}$, for all pairs k and n with i = 1, 2. Hence we can prove

$$||[f_j \otimes w_1]_{T_1}|| + ||[f_j \otimes w_2]_{T_2}|| \longrightarrow 0 \qquad \forall w_i \in \mathcal{H}, \qquad i = 1, 2.$$

REFERENCES

- [1] C. Apostol, H. Bercovici, C. Foiaş and C. Pearcy, Invariant subspaces, dilation theory, and the structure of the predual of a dual algebra. I., J. Funct Anal. 63 (1985), 369–404.
- [2] H. Bercovici, Operator theory and arithemetic in H[∞], Math. Surveys and Monographs, No 26, A.M.S. Providence, R.I., 1988.
- [3] H. Bercovici, C. Foiaş and C. Pearcy, Dilation theory and systems of simultaneous equations in the predual of an operator algebra. I, Michigan Math. J. **30** (1983), 335–354.
- [4] _____, Dual algebra with applications to invariant subspaces and dilation theory, CBMS Conf. Ser. in Math. No. 56, Amer. Math. Soc., Providence, R.I., 1985.
- [5] S. Brown, Some invariant subspaces for subnormal operators, Integral Equations Operator Theory 1 (1978), 310–333.
- [6] B. Chevreau, G. Exner and C. Pearcy, On the structure of contraction operators, III,
 Michigan Math. J. 36 (1989), 29-62.
- [7] B. Chevreau and C. Pearcy, On the structure of contraction operators with applications to invariant subspaces, J. Funct. Anal. 67 (1986), 360-379.
- [8] J. Conway, Subnormal Oerators, Pitman, Boston, 1981.
- [9] J. Dixmier, Von Neumann algebras, North-Holland Publishing Company, Amst. New York, Oxford, 1969.
- [10] G. Exner, Y. Jo and I. Jung, C_{.0}-contractions: dual operator algebras, Jordan models, and multiplicity, submitted.

- [11] G. Exner and I. Jung, Dual operator algebras and a hereditary property of minimal isometric dilations, Michigan Math. J. 39 (1992), 263-270.
- [12] G. Exner and I. Jung, Dual operator algebras and compressions of $C_{\cdot 0}$ and C_{11} contractions. I, submitted.
- [13] G. Exner and I. Jung, Dual operator algebras and compressions of $C_{\cdot 0}$ and C_{11} contractions. II, submitted.
- [14] K. Hoffman, Banach spaces of analytic functions, Prentic-Hall, Englewood Cliffs, NJ, 1965.
- [15] I. Jung, Dual Operator Algebras and the Classes $\mathbb{A}_{m,n}$. I, J. Operator Theory 27 (1992).
- [16] M. Ouannassir, Structure du predual d'une contraction de la classe A; Application aux classes $A_{m,n}$, Ph.D. Thesis, L'Universite de Bordeaux I (1990).
- [17] G. Popescu, On quasi-similarity of contractions with finite defect indices, Integral Equations and Operator Theory 11 (1988), 883-892.
- [18] M. Saina, Sur l'appartenance aux classes \mathbb{A}_{n,\aleph_0} , preprint.
- [19] Sz.-Nagy and C. Foiaş, Harmonic analysis of operators on the Hilbert space, North Holland Akademiai Kiado, Amsterdam/Budapest, 1970..

