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Abstract

Cross and autocorrelation spectra are dealt with in a unified category by a straightforward

method, which is called the operator algebra technique. In this technique the Laplace trans-

form of the correlation functions is performed prior to calculating the Liouville operators. It is

shown that this derivation procedure is very simple and the results are identical with those of

some other authors.

1. Introduction

Dynamical properties of macroscopic systems
can be expressed in terms of the time correla-
tion functions of appropriate physical
variables! ™. For instance, the thermal conduc-
tivity is given by the time correlation function
of the heat flux fluctuation, the polarizability
by that of the dipole moment, the magnetic sus-
ceptibility by that of the magnetic moment, and
the electric conductivity tensor by that of the
current density®”. Studies of correlation spec-
tra are classified into two categories : autocor-
relation spectra and cross — correlation spectra.
Most of the studies performend so far are relat-
ed with the former one.

Zwanzig developed a projection technique to
select out only the relevant informatin con-
tained in the dynamical variable?. Mori pre-
sented a projection operator technique and

obtained an expression for the Laplace trans-

form of an autocorrelation function as a contin-
ued fraction representation®. On the other hand,
several different types of approach have also
been reported. Lado et al. obtined the represen-
tation by expanding the dynamical variable in
terms of the orthogonal set of basis vectors in
the Hilbert space*. Lee got the representation by
utilizing the recurrence relation method®. Yi et
al. used the so ~ called operator algebra method
in getting the representation®. In this method
the Laplace transform of the time correlation
function is performed prior to calculating the
Liouville operators, while it is carried out reve-
rsely in Mori’'s work®. The operator algebra
techinque, when applied to this representation,
turned out to be simple and straightforword.
The studies introduced above contain only
one kind of fluctuationg force. It should be
mentioned that introduction of two kinds of
fluctuating forces yields both cross - and auto-

correlations. The study containing two kinds of
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fluctuating forces was initiated by Karasudani
et al”. They took into account two effects exp-
ressed by macroscopic and microscopic memory
functions in Mori's representation, but they got
an expression for only autocorrelation spectra.
Yi et al. reviewed the work by using the opera-
tor algebra technique'.

Among the studies on cross - correlation spec-
tra, the work of Nagano et al. draws attention of
the present authors''. Since it is based on Mori's
memory function formalism, the derivation is
somewhat complicated. In this paper, we shall
show that the cross ~ and autocorrelation spec-
tra can be obtained in a unified category by the
operator algebra technique and that this method
dis simple and straightforward.

2. Operator algebra

For a state variable ao in a many — body sys-
tem with Hamiltonian H, the time evolution in

Heisenberg representation is given by
ao(t)=exp(iHt) ao(0)exp( — iH?), 1)
which is identical with

daot) _

at iLao(?), (2)

where L is the Liouville operator corresponding
to H and is assumed to be Hermitian, i. e.,

<LFIG>=<FILG>

for arbitrary linear operators F and G. Here
<AIB> is the usual inner product and we use
the units in which A=1.

We now define the jth order flux a; in terms
of the zeroth flux a¢ as

aj=Qj-tiLaj-1 (j=1,2, 3, --), (3)
where
Q=1-P, (4

B= L, Pn=Pi+B-1, ®)
PiX=<Xlar><arlar> ‘a (6)

for an srbitary operator X and for k=0, 1, 2, ---.
It is to be noted that Eq.(6) implies projection
of X onto the ax axis and PiX means projection
of X onto the(j+ 1) dimensional subspace
spanned by the basis functions ao, a1, -*-aj,
which satisfy the orthogonality condition
<apla;> =23, were k,1=0,1, 2, --+, j.

We now consider the time evolution of the
generalized flux variables a;(t) defined by

ait)=exp(iLt)a; (7)
or

daft) _ .

77, =iLajt). (8)

As will be clarified later, the information about
the dynamical behavior of the system comes
from the Laplace transform of Eq.(7), i. e.,

aiz)= [, exp( - zt) exp(iLt)ajdt =(z - iL) 'aj.
9

Now it suffices to expand(z —iL) ' properly. The
way of expansion depends on choosing the pro-
jection operators.

Among many operator identities, we choose
P+Qj=1. Then we have(Appendix A)

(z-iL)'=Pz -iL) '+ (z - QiL) '@
+(z - QiL) '@QiLPi(z —iL), (10)
=@z -iL) '+(z-BiL)"'P
+(z - PiL) 'PilQi(z —iL)* (11)
In order to proceed further we take into account
the following properties :

P.Pj=P;Pi=P:5i, (12)
PPn=B (j<m), (13)
Q;P;=0, (14)
QRn=Q; (m<j), (15)
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P;-1aj=Qa;=0, (16)
Piz-PjiL) '=(z -PiiL) . (17)

In the following two sections we shall derive
the expressions for cross - and autocorrelation
spectra. The two spectra are defined in the fol-
lowing way. We consider projections of ajz)
onto a; and ax(k+)), respectively, specified by

Pjaf2)= & j(2)a;, (18)

Eia)=<ai2)la;><a;jla;> ", (19)
and

Prafz)= & j(2)ar (20)

Ep2)=<afz)lar><aplap> " (21)

Here &(z) and Z;(z) are named the autocor-
relation and the cross - correlation spectra,
respectively.

3. Cross — Correlation

Now we shall derive the expression for the
crosscorrelation spectra using the operator
properties introduced so far. We start with

af2)=P;+P,_1+Qaf2). (22)

The first term of Eq.(22) becomes Pjaj(z)=
& {(2)a; from Eq.(18). The second term of Eq.(22)
becomes(Appendix B)

Pj, 1aj(z)=gi(z)5'j,(z),

where
giz2)=(z —ij ul) 'gj, (23)
g=- A, (24)
A=<ajla;><aj-1la;- 1> (25)

By considering Egs. (3), (5), (6), (11) - (17), the
orthogonality condition and Eq.(24), gj(z) can be
changed as(Appendix C)

glz)= wyi2la;-1+gi-12)], (26)

where

yi(z)= <gi(z)lgj><ajlaj>"' (27)
or
giz)= jvj(z)[aj 1+ (- yj-2(aj-gtgi-2(2))]
= L(- IV ™y )
< Ym+2(2)Wm+1(2)am

J71

=m§0./1 m(@am, (28)
where

Ajm@)=(~ 1Y "yi2)yi- 1) - Ym+1(2)
(m=0,1,2,-,j-1). (29)

Similarly, the third term of Eq.(22) becomes

Qia/(2)=(z - Q;iL) Q;iLPja(2)=f{2) & i(2),

(30)

where
fl2)=(z-QiL)'f;, (31)
fi=QjiLa,. (32)

By using Egs. (3), (6), (10) - (17), and the orthog-
onality condition, f{z) can be changed as (Appen-
dix D)

(@=0(2)fit+fi+12)], (33)
where

Di)=<filfi><ajr11aj41> ! (34)
or

fi(z)=<l>j(z)[f}+¢>j+ 1(2) (f}+1+]5‘+2(2’))]
:m§+l¢,(2)¢j+2(2)"'¢m -12)fm -1
+D{(2)D)+2(2) Dn - 1(2)f7 -1
= =):_,.+1I10m(z)am+fb,.(z)an, (35)
where
Hjn(2)=0{2)Dj+2(2) P - 1(2) (m=j+1).
(36)

Adding up the first, second, and third terms
of Eq. (22), we obtain
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a2)=E 2) | [aj+gf2)+f2)] (37
= Ej(z) [aj+mj};0Ajm(z)am
+, 5 Hn@on+Hn@a).  (38)

If we insert Eq. (37) into Eq. (21), we have

Ei(2)4(z) G>Fk),

Ei2)Hp(z) (j<k), ©9)

E jn(2)=]
where Ajx(z) and Hji(2) have been defined in
Eqgs. (29) and (36), respectively. We now see that
Eq. (39) is identical with the result of Nagano et
al.' The explicit form for &;(z) will be dealt

with in the next section.
4. Autocorrelation

The autocorrelation spectra & ;(z) can be obta-
ined from Eq. (8). The Laplace transform of Eq.
(8) becomes

-a{0)+2za{2)=(z —iL) 'iLa;. (40)

The right — hand side of this expression can

be rewritten as

(z —iL) ‘iLaj=(z - iL) (P;+PB;_1+Q))iLa;,
(41)

each part of which is calculated as (Appendix E)

(z —iL) 'PjiLa;=iwalz), (42)
(z—iL) 'Pj_1iLaj=g{z) - yi(2)ai2), (43)
(z -iL) QjiLaj=f{z) - t{2)a z), (44)
where
ij<Laj|aj><aanj>", (45)
diR)=<fi)fi><a;jla;> (46)
=Df2)Ai+1, 47

and gj(2), yi2), f{(z), and ®j(z) have been defined
in Egs. (23), (27), (31), and (34), respectively.
Inserting Eqgs. (42), (43), and (44) into Eq. (41)
we have, from Eq. (40),

af2)=[z — io;+wiz)+ 0(2)] ' X (aj+giz)+f(z).
(48)

Comparing Eq. (37) with Eq. (48), we have
Ei(z)=lz - iwj+vyiz)+o(2)]", (49)

which is identical with the result of Karasudani

et al.”
5. Conclusion

So far we have shown that the cross - and
autocorrelation spectra can be easily deat with
in a unified category by using the operator alge-
bra technique. we may claim that this method is
simple since the procedure is straightforward.
The autocorrelation with one or two fluctuating
forces is involved in calculating lineshapes and
critical slowing downs in electronic and electron
phonon systems! ™ **. The methods of Mori® and
of Nagano et al." have been successfully uti-
lized in those problems. Thus we may expect
that theoretical investigation of the cross — cor-
relation spectra can also be easily carried out if
we use this method effectively.

Appendix A : Proof of Eqs.(10)
and (11)

Here(z - iL) 'can be expanded as

(z—iL)"=z"(l-i(I3j+Q,~)§—)
= {PL+QL)\
n=()( 2z )
=z (P+Q)+z %(PL+QL)+z %
(BLPL+PLQ,L+QLPL
+QLQL)-. (A1)

-1

By using @QiL=QiL(P;+Q)) and PiL=(1-@Q))
tL, we have

(z—iL) ‘=2z ‘P14z (iL)+z *GL) *+--]

,36_



Derivation of Correlation Spectra by the Operator Algebra Techinique

+2 (142 MQiL) +2 A QiLy+--1Q; »

+27[ I, E (&) (@iLYQILPALY]
_ = TR o= ~4'L1
=Bl £ (D14 £ (2

I

= ".'L N = :
e () 1Qienle £ (D]
=Pz -iL) '+(z - QiL) '@
+(z - QiL) 'QjiLP(z —iL) ™.
Similarly,

(z—iL) '=@Qfz - iL) *+(z - PiL)'P;
+(z - BiL) 'PiLQ{z -iL)™* (11)
=(z~iL)'Q+(z—BiL)'P;
+(z - iL) '\QiLP{z - PiL)™
=(z-iL) 'P+(z - QiL) ',
+(z-iL) 'PiLQ{z - QiL)™!

(A2)

(A3)

Appendix B : Derivation of the
second term in Eq.(22)

Here P;_1(2)aj(z) can be changed as

B afz)=P, [Q-1(z-iL) '+(z - B_4iL) 'P;_,
+(z = Pj- iL) ‘B 1iLQ; - 1(z ~iL) 'aj,
(B1)
by using Eq. (11). By taking into account Egs.
(12) - (16), we have
B 1aj2)=(z - P,_1iL) "B, iLQ;-1(z - iL) 'q;
=(z-B1il) ' £ Pmil - 1a,2)
=@ -P L) E <iLQ-1a/2) 1 an>
<amlam> ‘am
= --B4il)" T <a2)1Q1ilan>
<amlam> ‘am

By considering<atlai>=op and Eq. (3), we
obtain

Bi_1ai{2)=- (z- P;-1iL) ' &j(2)<ajla;>

<agj-1la;-1>"'aj-1.

Appendix C : Derivation of Eq. (26)

Here g{2) can be changed as

8i2)=(z-PB_1L) 'g;i=P;_\(z - P_1iL)'g;
=(Pj-1+P;-2)gi(2), (C1)

by using Eq. (17)
The first term of Eq. (C1) becomes

Pj_1gfz)=<gfz)la;j-1><aj-1laj-1> 'a;-1
=<gj(z)l(_A_,2‘)aj—1> <aj-1laj-1>7}
(—A;)_‘aj_l
=<gf2)lgi><ajla;> <ajlai>
<gj-1laj-1>"(~A) 'aj

= l2)g;. (C2)

The second term of Eq. (Cl) becomes

P, 5gi(2)=P;j-2(z - P;_1iL) 'g;
=P oQ;-oz—Pi-1iL)"!
+(z~P;-2P;-iL) P, 5
+(z - Pj-oP;1iL)'P; 2P, 1iLQ; -2
(z-B;-1iL) g
=P,;-5(z - Pj-3iL) 'P; 5iLQ;»
(z-P-1L) g,

by using Egs. (11) - (14), (16), and (17), or

Py 2g/(z)=(z = P;-9iL) 'P; - 5iLQ); - 5g,(2)
=z~ Py 5il) " £ <iLQ;-28(z) lan>
<amlam>7'am
=- G- Pal) g,
<gl{2)1Qi-silam><amian> ‘anm

or

Py ogi(z)=— (- P;_5il) '<gf2)laj-1>

<aj-2laj-2>"'aj-2

==~ (z-P-9il) '<g) | (- ADa;- 1>
<ajla;>"'<ajla;><aj-1laj-1>"!

X<agj-1laj-1><aj-2laj-o>"!

(-A)7'a; »

=-(z —E_ziL)“<gi(z)lgj> <ajlai>"!
AJA; -1 - A) g

=—(z-PF-2L)'<giz)1g;><ajla;> "
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(-4} Daj-s. (C3)
By using Eq. (24) and E. (27) we have
P_oglz)= 2Nz -Pj-2l)'gi-1= wi2)gi2).
From Egs. (C2) and (C3) we obtain

gi2)= wyi2llaj-2+gi-1(2)].

Appendix D : Derivation of Eq. (33)

Here f{z) can be changed as

f(2)=(z - QiL)f;
=[P+1(z - QiL) '+(z - @+1QiL) '@+1
+(z -~ Q+1QiL) '@ +1QiLP;+ 1z - Qil) 'If;
=[Bs1(z - QiL) '+(z - Q+1iL) '@+1iLP;41
(z-QiLl) I (D1)
by using Eq. (15) and the property Qi+1f;=0.
The first term of Eq. (D1) becomes

Pyii(z - QiL) 'fi=(Pi+1P)f{2)=Pj+1fiz)
=<fH2)aj+1><aj+1laj41> 'aj+1
= fIfi> <[> fi=0h2)

(D2)

The second term of Eq. (D1) becomes

(z = Q+1iL) '@+ BiLPj+1(z - QIL) 'f;
=(z - Q+1iL) '@ +1iLDi2)f;
=®fz)z - Qj+1iL) 'Qj+ iLfi=2)f;+1(z)
(D3)

by using Eqgs. (15) and (32). From Egs. (D2) and
(D3) we have

{(2)=02)f+fi+12)].
Appendix E : Derivation of Eqgs.
(42) - (44)
we start with the identity

(z -iL) %iLaj=(z —iL) \Pj+P;- 1+ Q)iLa;.
(E1)

The first term of Eq. (E1) becomes

(z—iL) 'PjiLaj=(z —iL)'<iLag;la;> <ajla;> ‘a;

=(z - iL) Hwjaj=iwa{z)

by using Eqgs. (15) and (44). The second term of
Eq. (E1) becomes

(z—iL)'P;-1iLa;
=[(z~iL) 'Q-1+(-B-uL) P 1
+(z —iL) 'Q;-1iLP;- 1(z — Pi-uL) "1P;-1iLaj

by using Eq. (A2). Taking into account P;.,
iLaj=— Aj;-1 and using Egs. (11), (23), and
(27), we have

Pi_1iLaz)=gi(z)+(z —iL) 'Q;- iLP; - 1g{2)
=gi2)+(z —il) Q4L "jgo<g,-<z) lam >
<amlam>'am
=g{2) - (2 —iL) 'Q;-1iL<gf2)| (- A)a; 1>
<ajla;j> 'aj-1=g2) - yi(2)aiz).

The third term of Eq. (El) becomes

(z-iL)'QiLa;=[(z~iL) 'Pi+(z - QiL)'Q;
+(z - iL)PiLQ{z - QiL) QiLa;
=f{2)+(z —iL)'PiLf{(z)
=f@)+e-il)" £
<iLf{i2)lam> <amlan> ‘'am
=flz) - (z-iL) '<f{2)la@j+1>
<ajla;> 'aj=f{2) - d{2)afz2),

by using Egs. (A3), (3) and (32).
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