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It is shown that the continued fraction representation of
autocorrelation functions can be obtained by applying the
operator-algebra method. The method is compared with Mori’s
memory function formalism, the moment cxpansion approach
of Lado et al. based on the Schmidt orthogomalization process
and the recurrence relation method developed by Lee.

1. INTRODUCTION

There has been considerable attention given to finding methods for direct
evaluation of the time autocorrelation functions since the original work was
initiated by Lowe and Norberg.[!l Time autocorrelation functions are an
important physical quantity and constitute a branch of nonequilibrium
ststistical mechanics. Actually they have been applied to many interesting
physical problems concerning  magnetic susceptibilities, electronic
conductivities, NMR spectra and so on.[2-5]

Several general approaches have been devised so far. Zwanzigl®) developed pr-
ojection operators to select out only the relevant information contained in the
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full dynamical expressions. Moril7] derived the exact generalized Langevin equa-
tion for a dynamical variable using a projection operator technique and obtained
an expression for the Laplace transform of a time autocorrelation function as a
continued fraction representation.

On the other hand, several different types of approach have also been reported
for the problem. Lado, Memory, and Parker[8] obtained the representation by exp-
ending the by dynamical variable in terms of an orthogonal set. More recently,
Leel9] got the representation by utilizing the recurrence relation method.

There is an alternative way to reach the generalized Langevin equation. It in-
volves proceeding directly from the Laplace transform of the time
autocorrelation function and taking the algebraic expansion of the inverse
operator.[101 This technique will be referred to as the operator-algebra method.

In the present paper, first we shall precisely review the other theories with
our main concerns on the calculation of the time autocorrelation function. Then
we apply the operator-algebra methodto direct evaluation of the time autocorre-
lation function.

II. FOUR APPROACHES

1. Mori’s theory

If, for a dynamical variable A in a many body system with Hamiltonian H,[H,Al
HA-AH#0, then the time evolution in the Heisenberg picture is formally given by
A(t)=exp(iHt)a exp(-iHt),where A=A(0) and h=l.

The information about A(¢) helps us obtain<A(¢)A(0)>, somtimes called the time
autocorrelation function,where the bracket denotes the ensemble average.
The equation of motion is given by

dA(t)/dt=iLA(¢) (1)
where L is the Liouville operator corresponding to H.
The standard Mori theory is based on the assunmption that L is Herm1t1an, i,e.,

(LF, G*)=(F, [1G1*) (2)

for arbitrary linear operators F and G, where G* is the Hermition conjugate
of G and (A, B) is any binary operation of two variables A and B.
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For our purpose we construct a biorthogonal set of vectors and the correspon-
ding projection operators. The quantity A, which generates succesive basis
vectors {1, {2, {n, forms a Hilbert space. The projection of vector G onto the
f; axis is given by

P;G= (G.¢5*) -1 ¢5. (j=0,1, n) (3)
where ¢i =tLj¢i-121,Lij= (1—Pj-1) Li-1,40=R and Lo= L. By a suitable
extension of the standard Mori approach, we obtain for the time evolutoon of the
dynamical variables £;(t)

t

dtj(t)/sdt=in;j lj(t)-j di(t—s) ¢i (s) ds+{j5+1(¥) (4)
0
or

rt
$i(t)=2;(t) FJ-FJ Zi(s) {tj+1(t—s)ds, (5)

0

where

Zi(t)=(£fj(t), £3*)/(£f5, £i*) , (6)
iwj=(iL;f;, £5*)/(f5, £5*), (7)
i (t)=(fj+1(t), £*541)./(£5, £5*). (8)

If we take j=0, then Eq.(4) leads to a generalized Langevin equation. The
variable fj+1(t) is regarded as a random force. Using the above equations

and connsidering the orthogonality condition, we obtain the integro-differential
equations for Ej(t) as

rt.
dzj(t)/dt=iw; z,-(t)—l $i(t—s) Zj(s)ds. (9)
0

It should be noted that Eq.(8) is given in terms of the memory function ¢(t). By
taking Laplace transform(LT) of Eq.(9), we have

Si(z)= [2—iwi+Eie1(z) AZger]-1 | (10)
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where
Z(z)=LTE(t)= I 2(t)exp(—zt)dt, (11)
0
A2j.= (fj+1, £*50)/(f5, £5*). (12)

Applying Eq.(9) successively, we can get a continued fraction expansin of the
hierarchy equations to higher order Efunction. So far we introduced the con-
tinued fraction representation for the Laplace transform of time autocorrelatio-
n functions on the basis of memory function formalism.

2. Monent Expansion Approach with Orthogonal Functions

Lado et al.[8] applied a schmidt orthogonalization process for calculation of
the magnetic moment autocorrelation function G(t) in the line shape of the NMR
spectrum. :

Let us consider the formal solution of the equation of motion for the magne-
tic moment fluctuation A(t) with the Hermitian Liouvillian operator L in Hilbert
Space,[ll]

(it)i

0 j!

lA(t))=exp(itL)|4(0)) =3 1Li4(0)). (13)
J=

This expansions leads directly to the moment expansion for G(t). To compute the
projection of {a(t) onto the first, or j=0,the following are defined using the
Schmidt orthogonalization process:

lo)=14(0)), (14a)
J-1 (k|L314(0))
1j)=LJ|4(0))— ¥ — k). (14b)
K=0 (k(k)

Than |4(t)) may be represented in this basis set as
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Qo

Il(t))‘—;?‘l) aj(t)lj) (15)

where aj(t)=(jl&(t)/(jlj). and in particular,

a0(t)=(4(0)14(t)) and (4(0)1(4(0)) =6(t),/6(0)

Futher, we can obtain the algebraic equationas for the coefficients aj(t).
These are formally solved using the Laplace transform representation to give

(iz+4 @o) 20(z)+ vo2ay(z)=i, (16a)

aj-1(z)+(iz+ wj)aj(z)+ v j2a5+1(2)=0 (16b)

where v;i2=(j+1 |j+1)/(jlj). @i=(ilLlj)./(jlj) and aj = (z)LT[aj(t)]
Here vj2, w; and ;‘; correspond to AZ2j5.1, iwj and z (z) delta with in the
previous section. respectively.

We then have the solution
6(2)./6(0)=a0(2)=1D1 (2)/Do(z) (17)

where Dj(z)is an infinite order determinant of the form

Dj(z)= |liz+ wj vijl 0
1 iz4+@wj+1 vij+12 .-
0 1 izt@jez - (18)

By expanding in minors of the first row, we easily obtain a recursion relation
for the determinants Dj(z) :

Dj(z)=(iz+W;)Dj+1(2)-12;Dj+2(2). , (19)

Repeated use of Eq(19) in the denominator of Eq.(17) leads an

—21_
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infinite continued fraction of the hierarchical equation for ao(z):
a(z) = 1
Zz-ivo+ V2o (20)
z-iv)+ v2;

z-iv; + s,

This equation is the same as Eq.(10) for j=o.
3. The Recurrence Relation Method Developed by Leel91

It was shown that variable A(t) may be given in terms of an

orthogonal expansion as
00

A(t)= % aj(t)f; (21)

J=o
where {aj(t)} is a set of time dependent real functions and {f5} is a
set of orthogonalized basis vectors spanning the space which is
realized by the liner product. For simplicity, it is assumed that A is
Hermitian.
It is well known that basis set{fj} satisfies the recurrence
relation

£501=fi+ Ajfi-1, j20, (22)
where fj=iLfj,A;j=(£jfi)/(£fi-1.£f5-1), £-1=0 and Ao=1. It is to be

noted that A ,corresponds to A2; of Mori or »2j-1 of Lado et al.
Further, Eq.(22) yields a recurrence relation for {aj(t)}:

Aj+q aje1(t)=—aj(t)+aj-1(t), j20 (23)

where ajlt)=daj(t)/dt and a-1(t)=0. By applying the Laplace transform
(LT) on Eq.(23), we obtain

1=zap(2z)+A1a1(2), (24a)

~ ~ - ~
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aj-1(2z)=zaj(2)+Ase1aj+1(2), j21 (24b)

where aj(z)=LT[a,(t)].Eqgs.(24a) and (24b) correspond to Egs. (16a) and
(16b) respectively. The main difference is that the factor wi, which
appears in the approaches of Mori and Lado et al. does not appear
here. This results from the fact that all the f, are Hermitian [see
Eq.(35) or Ref.12]. Fxtension to the non-Hermitian case can be
realized by starting from the first principle. Egs. (24a) and (24b)
may be combined to generate the following continued fraction,
1
ao=(z)=z+ Ay
A Az
Z+ ...

(25)

which agrees with Eq.(20) except for the o term.

4. OPERATOR-algebra Method

Here we will show that the Laplace transform of time autocorrelation
functions can be expressed as a continued fraction by applying the op-
erator-algebra method.

From Eq.(6) we have

Zj(z)= LTL(F5(t),£5*)/(£3(2),£5%)]

= ((z-iL)-'fs,£3*)/f5,.15*%) (26)
Which can be rewritten into the following form by using Mori’s proje-
ction operator:

Z;(z)((z-iL; Ps-iLj Pi")-1£5.£i*)/(£i.£i*)
=({(z-iLj P;i )-1+(z-iLj Pi ) 1iLsP;
(z-iLj)-1} f3.£5*)/(f5.£5*) (27)

where P; =1-P; and z-iLj=z-iL;Pj-iLi P; have been used.
The first part of Eq.(27) can be calculated as
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((z-iLgP5 )1 £5,85%)=({ z + 5 ilsPi'% + --- }

fi,f5*)=(f;,fi*)/z (28)
since (Lj P;'f;,f;*)=0. The second part can be calculated by using

Pi(z~iLj)-1f5=((z-iLj)-! £;,£5*)- (f5,f5%)-1-f;
=Z5(z)-f;. (29)
Inserting Egs.(28) and (29) into Eq.(27) we obtain

Ej(z)=[z-(iLsfj,fj‘)-(fj,fj‘)'l
-(iLsP; " (z-iLj P;’)-1
iLifi,f5%)- (f5,f5%)-11-1, (30)
In order to simplify the problem, we assume that L is Hermitian.
We also consider the following relations:

By’ (z-iLs Pi')t = ¥ (23" - Juby°
=(z-P; iL;)-1P;’ (31)

and

((z-iP’3Lj)-1P’;iLif;, (P;iLif)*) =0. (32)
when then obtain
[ ((z-iLj+1) 501, f%5+1) . (Fjer.f%+1) )-1

Z2i(z)= z-iwj +1 (fje1.f%5+1) (f5.f%*5) J (33)
which can rewritten as

Zi(z)=lz-iwj + Zj+1(z2) - A2j.q]1-1 (34)
where

Ejfl(Z)E((Z'iL.i-rl)'lfj+1.f’j+1)/(fj+1.f'.i+l). (35)

Eq.(35)is similar in form to Eq.(26)and can be calculated further with
the same procedure,leading to the continued fraction. This show Zij(z)
could be directly expressed using the continued fraction

representation without utilizing the memory function formalism as in
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Eq.(9).

III. CONCLUDING REMARKS 1

It has been shown that the Laplace transform of time autocorrelation
functions can be given as an infinte continued fraction by applying
the operator-algebra method.

The theoories mentioned in the last section seem to have different
theoretical backgrounds at first sight. However, these approaches lead
to identical results. Under careful examination, we see that they
involve orthogonalization processes such as the Gram-Schmidt process.
Thus we can say that the method involing the projection operator
technique is a formal interpretation, from a different standpoint, of
the Gram-Schmidt process. '
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