A Survey on Proofs of the Tychonoff Theorem

Sang-Ho Kum

1. Introduction and Preliminaries

The Tychonoff theorem is one of the most important theorems in general
topology. It plays a central role in the development of a wealth of theorems
within topology and applications of topology to other fields; the construction
of the Stone-Cech compactification of any T ychonoff space, Ascoli’s theorem
on compactness of function spaces, the proof of compactness of the maximal
ideal space of a Banach algebra, the study of Cantor set, etc.. In this note,
in order to reflect on the Tychonoff theorem, we will introduce several proofs
of the Tychonoff theorem which use as basic tools the Axiom of choice, net,
filter, and subbase. :

We introduce some definitions and theorems which will be wused
throughout this note. Let X; (€A) be a set, then ﬁhe product set is

X= ;[;IAXA={x{x:A—> }éJAX,z, x(A)eX,,A€A}. The Tychonoff theorem says

that X, (A€A) is compact iff X= LIAX" is compact.

The following statements are equivalent .

1. The Axiom of choice :To any nonempty set 7 whose elements are
nonempty sets, there exists a function called a choice function
f:T— ALJTA such that f(A)eA for all A= 7.

2. X; (A=4) is nonempty set, then X= LIAX‘ is nonempty set

3. Zom's lemma : Let P be a partially ordered set in which every chain
has an upper bound. Then P has a maximal element..
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Definition 1.1. A class A of subset of X has the finite intersection
property iff the intersection of any finite subclas,s from A is nonempty.

Definition 1.2. A set A is directed set iff there is a relation < on A

-

satisfying:
(1) A<, for each A4, (2)if A,<4, ,A2<A;, then A<,
(3) if A),4,€A, then there is some ;€A with 4;<A; A,<A;

Definition 1.3. A net (x;) in a setX is a function f: A—X,where 4 is
some directed set. The point f(A) is usually denoted by x,; and we often
speak of ” the net (x;) ”.

Definition 1.4. A net (x;) in a setX is an ultranet iff for each subset E of
X, there exists A¢€A such that either x,€E or x,€ X—E for all A24,.

Definition 1.5. Let (x;) be a net in a topological space X. Then (x)

converges tox ( written (x;)—x ) provided for each nbd U of x, there
exists ApEA such that x;€U for all A>21,.

Lemma 1.6. If (x;) is an ultranet inX and 7 is a map: X—Y, then
( f(xp ) is an ultranet in Y.

Definition 1.7. A filter F on a set X is a nonempty collection of
nonempty subsets of X with the properties:
If F\,F;€F then F,[F,eF, ifF,eF, F,CF, then F,eF.

A subcollection Fy of F is a filterbase for F iff each element of F

containsome element of Fy, that is, iff F={F,CX|F,C F,, for someF,eF,}.
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Definition 1.8. A nonempty collection C of nonempty subsets of X Vis a
filterbase for some filter on X iff if C; C,€C then C3;CC,()C, for some

C3=C, in which case the filter G generated by C consists of all supersets of

elements of C, namely G={G,CX | C;CG, forsome C,eC}.

Definition 1.9. If F is a filter onX and j maps X intoY, then
f(F)={G,CY|{(F)CG,, for some f(F,)eC} is the filter on ¥ having
for a filterbase C={AF,)| F\eF}.

Definition 1.10. A filter F on X is an ultrafilter iff there is no strictly finer
filter G .than “F, that is, there does not exist G suchthat F CG.

Lemma 1.11. If F is an ultrafilter on X and / maps X into Y, then
f(F)={ G, CY | {(F|)CG,, for some f(F;)eC} is an ultrafilter on ¥ having
for a filterbase C={AF)) | F,eF}.

Definition 1.12. A filter F on a topological space X is said to converge to
x ( written by F—x ) if the nbd system U,atx is contained in F.

Definiti(_)n 1.13. If (x;) is a net in X,
the filter G={G,CX | B,CG, forsome B, &C} generated by the filterbase
C={B,, | A)eA}, B, ={x;] 224}, is called the filter G generated by (x,).

Definition 1.14. If F is a filter onX, let Ap={ (x,F,)| x€F,€F}.
Then Ay is directed by the relation (x;,F,) < (x3,F,,) iff F,,C F,,
so the map P: Agp— X defined by P(x,F,) =x is a net in X. It is
called the net based on F. )
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Definition 1.15. Let . (X, 7) be a topological space. A classS of open
subsets of X is a subbase for the topology 7 on X iff the finite intersections

of members of S form a base for 7.

The following statements are equivalent and play a crucial role in the proof;
(1) X is compact,

(2)Each open cover of X has a finite subcover ,

(3)Each family F of closed subsets of X with the finite intersection
property has a nonempty intersection, —

(4) Each ultranet in X converges,

(5) Each ultrafilter in X converges,

(6) There is a subbase S for X that each subfamily SL of S, such that no finite
subfamily of SL covers X, fails to cover X,

(7) Each family B of open subsets of X, such that no finite subfamily of B
covers X, fails to cover X.

2. Proof of the Tychonoff theorem by Zorn's Lemma.

Lemma 2.1. Let j be a class of subsets of a set X with the finite
intersection property. Consider the collection F of all superclasses of ] which
have the finite intersection property. Then F, ordered by class inclusion,

contains a maximal element M [4,p.174].

Proof. Let T={ B;| A/ } be a chain of F and let B= AQABA.

Claim : Be F ,ie JC B, B has the finite intersection property. Since B,sP
(A€eA), JCP, then JC B,. Since B;C B, then JC B. Let
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(A, A, A JCB. Since B= ALé)AB,‘, there exists B,,.. ,B, €T such that

A\eB,, .. ,AEB,, . Since 7 is a chain of F, there exists B,
1<k <n such that B, C B,,, B; CB,, .... , Bs C B, Hence
{A;,A,, ..... ,A,} C B,,. Since B,, has the finite intersection property,

then _ A;+ @ ie B has the finite intersection property. For all

B,eT, we have B;C UB;=B ie B is an upper bound for 7. By Zom's

lemma, F contains_'a maximal element.

Lemma 2.2 The maximal element M in Lemma 2.1 posses the following
properties [4,p.175];
i (M, M., ..... JMYCM, then M(M,..... MMM,

2)if ANM =0, for every MiEM, then AeM.
The Tychonoff theorem says that X; (A€4) is compact iff X= A[;[AXA is

compact[4,p.175).

Proof. ( <=== ) Let X= L[AX‘ ‘be compact. Since the projection maps
P,: X — X, (A€A) are allcontinuous, P;[X]=X, is compact.
( ===> ) Let X, (A€A) be compact. Let J={F,| k=K} be a class of closed
subsets of a set X= };[AX L with the finite intersection property. Then, we

will show that (VJ=(XFxlkeK}+#@. By Lemma 2.1, M={M,| 7<H} be

a maximal superclass of j with the finite intersection property. For each

_35_



Sang-Ho Kum

projection maps P; : X — X, (A€A), { P[M,] | y€H} is a class of closed

subsets of X; with the finite intersection property.

[~ for {M,,M,,,} CM then @+ J_|M,&M. Since

PAM,] c P,IM,], then @ + P,,( QM,,) c QPA[M%] c QTDT[E‘] I

Since X, (A€4) is compact, n{ m l7eH} + 0, (leA).
Taking x,€ (Y PJIM,]| 5€H}+® (A€A), then we have for every 7€ H,
x,€ P,[M,] ie-for é'very open set G,of x; ,

G PiIM,J+0 (7eH) 2.1).
Here, let p=<x,|AeA>, thep pEX= LLX,‘. Let p=B, where B is a

member of the defining base for X= };IAX“ ; (3=1,2,3,--,n)

peB= P, ' [G,)N -+ NP, [G,] where G, is openset onX,,
Since P, () =x3,€G, by(21), G4, WP, IM,]*= @ (€H),(i=1,2,3,..,n).

Hence P,'[G,)(M,+ @. By Lemma 222, P, '[G,] € MBy Lemma22.1,

property, for every M,e M ,

BMM,= P, 7' [G, 1N =n- AP,'GINM, +0
iepe M, (7€H). Since ] C M, J=(F,| keK ) is a class of closed
subsets of X = LIAX“’ for every Fy€J, pe F,=F, (keK). Hence

pe(VU=(XF,|keK} + @ ie X= LIAX,‘ is compact.
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3. Proof of the Tychonoff theorem by Net.

Lemma 3.1 (P.(x))) = P.(x) inX, (e€A), then a net (x;) — xin
X= Il X, [5p.76].

Proof. Let U,—{ UCX| U is anbd ofx } be the nbd system atx in X,
where U= Q P, '[U,] U, is a nbd of P,(x) in X, .Since

( P.(x)) )>P,x) inX,, then for each U,of P,(x;) in X,, there exists
Ai€A such that P,(x)€U,, for all A>24;. Here let Ap=MAX({4; 1<i<n},

then we have Po(x) & U, for all 4> A Thenx, € U=[) P, '[U,]

for all A= Ap. Hence a net (x;) = x in X.

,

The Tychonoff theorem says that X, (e€A) is compact iff X= al;IAX" is

compact[5,p.120].

Proof.( ===>) Let (x;) be an ultranet in X= GI;IA‘X,. By Lemma 1.6,

( P,(x;)) is an ultranet in X,. Since X, is compact, then ( P,(x;) )

converges in X,. By Lemma 3.1, (x;) converges in X=UI;IAX,. Hence

X=JIX,is compact.
acA

4. Proof of the Tychonoff theorem by Filter.
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Lemma 4.1 P(F) — Py(x) in X; (A€A), then a filter F — xin
X= LIAXA [1,p217].

Proof. Let Uy={ UCX|U isanbd of x } be the nbd system at x in
X, where U=QP3,'1[U;], Ui is a nbd of P,(x) in X;.
Since Py(F) — P,(x) in X, then U; P, [Fl. Then P, [F;] C U; for

some F; €F. then we have F; C P,,i_l[Ui]. Since F is a filter,

(\F; < F, (\Fi .c U=QP(‘[VUJ, so U= [P, [U)] eF. Thus

the nbd system at x U, C F. Hence a filter F —» x in X= LIAX‘ .

The Tychonoff theorem says that X, (A€A) is compact iff X= LIAX 2 1s
compact[1,p.224].
Proof. ( ===> ) Let F be an ultrafilter on X. By lemma 1.11,, P,(F) is

an ultrafilter on X,. Since X, is compact, then P;(F) converges in X, By

lemma 4.1, F converges in X. Hence X is compact.

Remarks. A sequence is not sufficient to explain a convergence in a set.
In order to explain to the convergence in a set, the conception of a net (x2)
is generated. A filter is generated in the process of deeply investigating a tail
Ba={x:| 2220} of U.

The following properties are obtained by Definition(1.1.3) (1.1.4) [5,p81];
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(1) A filter F converges to x in X iff the net ( P(x,F,) ) based on F
converges lo X,
(2) A net (x;) converges to x inX Iiff the filter G generated by (x,)

converges to X.

Proof (1). ===> ) Let F —» x. Let Uy={ UCX|Uis anbd of x }
be the nbd system at x in X. Since F — x, thén U, C F. Hence U e F.
Pick p € U. Then (p,U) € A and if (q,F,) 2(p,U), then F,C U,
P( q,F,,,)=qez"Fl‘,r C U. Hence the net ( P(x,F,) ) based onF
converges to X.
( <=== ) Let the net ( P(x,F,)) based on F converges to x. Let
U,={UCX|Uis anbdof x } be the nbd system at xin X. Since the net
( P(x,F,)) based on F converges to x, foral U €U,, there exists
some (pg, F,,) such that P(p,F,)=p €U forall (p,F.) = (po,Fg),
ie for'all pe F, then p e U. Hence F, C U. Since F is a filter, then
U e F. Hence U, C F, ie F — x.

5.Proof of the Tychonoff theorem by Subbase.

The Tychonoff theorem says that X, (A€A) is compact iff X= L[AX 2 1S

compact(2,p.143].

Proof. ( ===> ) Let 5= ALE)A{ P,7'(U) | U is open in X; } be a subbase

for X= };[AX" sﬁch that no finite subfamily of S covers X= LIAX,‘. Then we
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will show that S fails to cover X= LIAX"' for each A€ A let

By={ UCX, | U is open in X, such that P,~}(U) e § ).

Since in P,7N(U) tails to cover X= I;IAX,], iL_,J]Ui fails to cover X;

;that is, no finite subfamily of B; cover X ;. Since X, is compact, B, fails to
cover X;. Then, there is a point x; such that x2€(X,—U) for each Uin B 2
Then point x whose A—th coordinate is x 2 belongs to no member of S

and consequently S fails to cover X = };[AX,,. Hence X= L[AX,. is compact.

6.The Tychonoff product theorem implies the Axiom of choice.

A sketch of the proof of J.L.Kelley[2] is as follows. He assuredly demonstrate
the following statement of the Axiom of choice :
X, *+® (1€l), then X= };IAXA*@.

Step 1. He begin by adjoining a single point, say A, to each of the set X
Let Y,=X,XA).

Step 2. He assign a topology for Y a by defining the cofinite topolgy T, on
Y, then T,={G,| G,° is a finite subset of Y,} { {®@}. Then Y, is compact
and the product space Y= L[A Y, is compact by the Tychonoff theorem.

Step 3. For each A€, let Z; be the subset P, (X)) =X,x H”Y, of Y.

Step 4. He assumed that Xy is closed in Y, and Z; is closed in Y.
Step 5. For any finite subset B of A, the intersection‘_ @ * /Q} Z, =
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@PA'I(X,I), for, since each X; #@, he may by the finite Axiom of choice
choose x,; &€ X, for- A€B, and set x;=A for e A—B.

Step 6. The family of all sets of the form Z,l is a family of closed subsets
of Y with the property that the intersection of any finite subfamily is
nonempty. Since Y is compact, we have @=+ QAZ" = QA P,”1(X). Bu

QA P,"1(X)) is precisely X= L[AX;, and the Axiom of choice is proved.

But, Step 4 is not true. We .assert that X, is not closed but-open in Y.,

and Z,.is not clo;ed but open in Y. First, we show that X, is not closed in
Y, Indeed, if X; were closed in Y, then X;¢ is open in Y,, ie X,={A}
is open in Y, Hence {A}*=X; is a finite set. But this is not true in the
case that X, is an infinite set.

On the other hand, by the definition' of the cofinite topology T, for Y,
{A}*=X, is clearly open in Y; Now we show that Z; is not closed in Y.
Indeed, if Z; were closed in Y, then {Z)}°={A}x ql;[)Y,, (=) is open Y.

Hence there exist the finite nonempty open subsets O, in Y, (a;, acA)
(i=1,2,--,n) such that | )
04,X0 X+ X0, X all‘Y, c {A} x !;IAY,,.

Then, we have two possibilities;
Casel: A= q;, for some i.
Then, we have @ #0,S{A). Since {A} is a singleton set, we have
Oa={A}. By the fact that X; is not closed but open in Y, X,;¢ ={A} is
closed but not open in Y, Hence O; is closed but not open in Y, This
contradicts the fact that O, is open in Y.
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Case2: A= a, for some a< /.

Then, we have Y, & {A'}. Since {A} is a singleton set, we have Y;={A}.
Since Y,=X;\{A}, we have X;=@. This contradicts X,;#0@. This
completes the proof. Now we show that Z, is open in Y. Indeed, we know
that X, is open in Y,. Since the projection maps P,’s are all continuous, we
have Z,= P;" 1 (X)) = X, x L[AY,, is open in Y. Finally, we are in the
position to give a correct proof of the theorem. We begin by adjoining a

single point, say A, to each of the set X, Let Y,=X,;LXA}. We assign a
topology for Y; by ~defining T ;= {o, {A}, X,, Y.} Since 7, is'a finite
set, each 6pen cover of Y, obviously has a finite subcover. Thus Y, is

compact and the product space Y= J,;[AY,, is compact by the Tychonoff

theorem. Note that X, is closed in Y, by the definition of the topology T ;.
For each A€, let Z, be the subset P, '(X,) =X,x L[”Y, (psA)of Y.

Then Z;= P, 1(X,) is closed in Y. Indeed, we know that X, is closed in
Y, Since the projection maps P;'s are all continuous, we have

Z,= P;7 M (X)= X, x LLY,, is closed in Y. Moreover, for any finite subset
BofA, the intersection @ * [;L Z, = @PA_I(XA), "for,‘k since each
X, +9, we may by the finite Axiom. of choice choose : x,€ X, for
A€B, and set x;=A for A€ A—B. Consequently, the family of all sets of

the form Z; is a family of closed subsets of Y with the property that the

intersection of any finite subfamily is nonempty. Since Y is compact, we have
S QAZ" = QAPA_I(X,,). But, QA P,"' (X, is precisely X=£[AXA, and

the Axiom of choice is proved.
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Remark. J.L.Kelley’s proof is incorrect because of _assignment of the

cofinite topology T; for Y, But we can prove the desired result Just using
his argument, only if we assign a new topology for Y, with the properties:
X, is closed in Y,, Y, is compact, and Z, is closed in Y.

Simply we find another example for which is satisfying,
that is, 7,={0,{A},Y,).
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