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Abstract

In this paper, we study the existence of solutions of implicit vector
variational inequalities for noncompact valued multifunctions under generalized
pseudomonotonicity assumptions and the Hausdorff topological vector space
setting.
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1. Introduction

A vector varnational inequality (shortly, VVI in a finite dimensional
Euclidean space was first introduced by Giannessi [6]. Since then, many
authors have studied existence theorems for generalized versions of VVI ([1,
2, 4, 5, 7-20, 22-24]. In particular, Lee and Kum [18] poved some existence
theorems for solutions of implicit vector variational inequalities compact valued
multifunctions under generalized weak pseudomonotonicity assumptions and
the Hausdorff topological vector space setting.

In this paper, following the approaches of Konnov and Yao [9], we
investigate the existence of solutions of implicit vector variational inequalities
for noncompact valued multifunctions under generalized pseudomonotonicity

assumptions and the Hausdorff topological vector space setting.

2. Preliminaries

Let E be a Hausdorff topological vector space, X a nonempty convex

subset of E, F another topological vector space and C:X—2F a
multifunction such that for each x€ X, Cx is a convex cone in F with
mtCx+o and Cx+ F. Let L(E,F) be the space of all continuous linear
mappings from E to F, ¢:L(E,F)XxXXxX—F a function and

T: X— 2MEF 4 multifunction.

In this paper, we consider the following implicit vector variational
inequality (IVVI) for multifunctions; s€ T x
(IVVI) Find x<€ X such that for each ye X, there exists such that
o(s, x,y) ¢ —intCx.

We consider now the following special cases of (IVVI). For any

s€ L(E,F) and x€ E, <{s,x> denotes the evaluation of s at x.

(D ¥ AL(EF)—L(E,F) is a continuous mapping and
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¢(s, x, ) =< As, 7(y,x)>, then (IVVI) is equivalent to finding x e X such
that for each ye X, there exists se Tx such that

CAs,7(y,x)>¢ —intCx, which is the generalized vector variational-like
inequality for multifunctions investigated by Ansari [2].

M If ¢(s,x, ) =<s, 7(v,%)>, then (IVVI) reduces to the problem of
finding xe X such that for each ve X, there exists s Tx such that

<s,7(y,x)>¢ —intCx, which is the vector variational-like inequality for
multifunctions studied by Ansari [1] and Lee et al [11].

(ID If ¢(s,x,3)=<s,y—x>, then (IVVI) becomes the problem of
finding x< X such that for each ye X, there exists s& Tx such that
(s,y—x>¢ —intCx, which is the vector variational inequality for

multifunctions investigated by Lee et al [12], Lin et al [20] and Konnov et
al. [9].

(IV) If ¢(s,x,¥)=<s,y=x> and T is a single-valued map, then (IVVI)
is equivalent to finding x€ X such that for each ye X,
(Tx,y—x>e¢ —intCx , which is the vector variational inequality for

vector-valued functions investigated by Chen [4], Lai et al [10] and Yu et
al. [24].

Now we give the generalized pseudomonotonicity concepts and the

generalized hemicontinuity concepts on the multifunction 7T

T is said to be

(1) generalized C-pseudomonotone w.rt. ¢ if for any x,ve X,
Jse Tx such that ¢(s, x,y) & —ntCx implies Vte Ty
—¢(t, y,x) & —intCx.

(2) generalized weakly C-pseudomonotone w.rt. ¢ if for any x,ye X,
Jse Tx such that ¢(s, x,y) & —ntCx implies 3 te Ty such that
—¢(t, v,x) & — intCx.

(3) generalized hemicontinuous w.rt ¢ if for any x,yve X  and
a<[0,1], the multifunction a—¢(T(x+a(y—2x)),x+a(y—x),y) is
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upper semicontinuous at 0+, where
H(T(x+aly—x) ,x+ a(y—x),y) ={g(t,x+ a(y—x), y): te T(x+ a(y—x))}.

Let 7: XX X—F be a function. Then T is said to be

(1)' generalized C-pseudomonotone w.rt. 7 if for any x,ye X
dse Tx such that <s,7(y,x)> ¢ —mntCx implies Vte Ty
—<t,p(x, y)> & —intCx.

(2)" generalized weakly C-pseudomonotone w.r.t. 7 if for any x,ye X
J se Tx such that <s,7(y,x)> ¢ —ntCx implies I te Ty such that
—<t,p(x, y)> & —intCx.

(3)’ generalized hemicontinuous w.r.t. 2 if for any x,ye X and

e [0,1], the muiltifunction a> < T(x+ a(y—x)) ,7(y, x+ a(y—x))> is

upper semicontinuous at 0+, where
(T (x+aly—x), )y, xta(y—x))>={<s, n(y,x+a(y—x))>:s€ T(x+ a(y—x))}.

We can easily obtain the following lemma.

Lemma 2.1. Let E, X, F, C, 7, ¢, and T be the same as in the above.

Then we have

(1) T is generalized C-pseudomonotone w.rt. 7 = T is generalized C
-pseudomonotone Ww.r.t. some ¢.

(2) T is generalized weakly C-pseudomonotone w.r.t. 7 = T is generalized
weakly C-pseudomonotone w.r.t. some ¢.

(3) T is generalized C-pseudomonotone wurt. ¢ = T is generalized
weakly C-pseudomonotone w.r.t. ¢.

(4) T is generalized hemicontinuous wurt.p =T : generalized

hemicontinuous w.r.t. some ¢.
Now we introduce a particular form of Theorem 1 in [21]; this is modified
in order to achieve our main results. This theorem is a generalization of the

well-known fixed point theorem of Fan-Browder(see Theorem 1 in [3]).

Theorem 2.1. Let X be a nonempiy convex subset of a Hausdorff

_72V



A Remark on Implicit Vector Variational Inequality

topological vector space E, K a nonempty compact subset of X. Let

A, B: X—2% be two multifunctions. Suppose that

(1) for any x€ X, AxCBx;

(2) for any x€ X, Bx is convex;

(3) for any x€ K, Ax+Q;

(4) for any yeX, A~ l'yis open; and

(5) for each finite subset N of x, there exists a nonempty compact
convex subset Ly of X containing N such that for each

XELN\K, AxN Ly+0.

Then B has a fixed point x, that is, x< Bx.

3. Implicit Vector Variational Inequalities

By Lemma 2.1 and Theorem 2.1, we obtain the following existence theorem
of the implicit vector variational inequality (IVVI) under the generalized

pseudomonotonicity condition.

Theorem 3.1. Let E be a Hausdorff topological vector space which the
topological dual space E* of E separates points on E, X a nonempty
convex subset of E, F another topological vector space and C:X— 2F a
multifunction such that for each x€X, Cx is a convex cone in F with
intCx+0 and Cx+ F, P: = N,;exCx, L(E, F) equipped with either the
topology of pointwise convergence or the topology of bounded convergence,
¢: L(E, F)x XX X— F a function and T: X— oLEFR 4 multifunction. Let
K be a  nonempty weakly  compact  subset  of X and
W: X—2F, Wx= F\(—intCx), such that the graph Gr(W) of W is
weakly closed in XX F. Assume that the following conditions are satisfied;

(1) T is generalized C—pseudomonotone w.rt. ¢;

(2) T is generalized hemicontinuous w.rt. ¢

(3) for each s€ L(E,F) and x€ X, ¢(s,x, *+) is P—convex;

(4) for each teL(E,F) and x€X, ¢(t,x, *) is continuous where both
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X and F are equipped with the weak topologies;
() for any s€ L(E,F) and x€ X, #(s,x,x)€ P ; and
(6) for each finite subset N of X, there exists a nonempty weakly compact

convex subset Ly of X containing N such that for each xe Ly\ K, there

exists y& Ly such that there exists te Ty, —¢(t, v,x) € —intCr.

Then there exists xe& K such that x is a solution of the implicit vector

variational inequality (IVVI).
Proof. Define two multifunctions A, B: X—2% to be

Ax:={yeX|3te Ty, — ¢t y,x) e —intCx},

Bx: = {yeX|Vse Tx, §s,x 3 —intCx).

The proof is organized in the following parts.

(i) Since T is generalized C —pseudomonotone w.r.t. ¢ for any xeX,
AxC Bx.

(i) For each x€ X, Bx is convex, Indeed, when y, z€ Bx and e [0, 1],

we have for any se Tk,
Ws,z,ay+ (1—@)2) = ad(s,x,y) +(1— a)¢(s, x,2)— P
Ca(—=mntCx) + (1— a)(— intCx) — P
C —intCx — Cx

C —intCx.

Hence ay+ (1— @)z € Bx, as desired.

(iii) For each y= X, A”'y is weakly open. In fact, let {x;} be a net in
(A7'y)° weakly convergent to x&.X. Then y& Ax; and hence for any
te Ty, —¢(ty,x;) ¢ —intCx,. Thus for any te Ty,
—d(t,y,x,) € Wx,.  Since  (x;, — (2 v,%)) € GA W), by virtue of

assumption (4) and the weak closedness of GH W), — ¢ t,y,x) € Wx for
any te Ty, that is, for any teTy, —¢(t, y,x)& —intCx, and hence
vy & Ax, namely, x (A 'y)° Therefore (A~! ¥)¢ is weakly closed, whence
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A7l s weakly open.

(iv) By hypothesis (6), for each finite subset N of X, there exists a
nonempty weakly compact convex subset Ly of X containing N such that
for each xeLy\ K, there exists yeLy such that there exists t Ty,
— ¢(t,y,x) € —intCx. Thus for each x€ Ly\ K, there exists ye Ly such
that ye Ax and hence Ly Ax+ @.

(v) B has no fixed point. If not, there exists x< X such that for any
s€Tx, ¢(s,x,x) € —intCx. By assumption (5), for any se Tx,
¢(s,x,%) =(—intCx)(\ Cx = @, which is a contradiction. Indeed, if there
exists ve(—intCx) N Cx,then 0 = —v+v €—intCx+ Cx =—intCr
This implies Cx= F because 0€infCx and #ntCx is an absorbing set

in F, which contradicts the assumption Cx=#+ F. Therefore B has no
fixed point.

(vi) From (i)-(v), we see, by Theorem 2.1, that there must be xe K such

that Ax = @, namely, for any y€X, y€Ax, that is, for any te Ty,

—¢(t, 3, x) ¢ —intCx. 1)
Suppose to the contrary that x is not a solution of (IVVI). Then there

exists ye X such that for any se T,Tr,
4(s, x, y) € — intCx. (2)

Let x,:=x+a(y—x) for a=[0,1]. Since X is convex, x,=X.
Define a multifunction H:[0,11—2" by for any e=[0,1],

H(e): ={¢(s, x4 9): s€ T(x,)}. Then, by (2), H(0)C —intCx. Since T
is generalized hemicontinuous w.r.t. ¢, there exists @< (0,1] such that for
any a<[0, @), H(a)C —intCx. Hence there exists @< (0,1] such that

for any e (0, @) and s= T(x,),

4(s, x,, v) € —intCx. (3)
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Fix a=(0, 2). By the P-convexity of ¢(s, x,, ), we have for any
se T(x,),

W(s, Xq %5) = (s, g, @9+ (1~ ) %)

€ ad(s, x4 ¥)+ (1 —a)¢(s, x,, x) — P.
From (3) and assumption (5), we have for any se 7(x,),

—(1— @) (s, %4, x) € ad(s, X, ¥)— $(s, %q, %) — P
C —intCx— P—P
C —intCx— Cx—Cx

C — mtCx.

Thus for any s€ T(x,), —¢(s, %, x) € —intCx, which contradicts (1).

Hence x is a solution of (ZVVI).

From Lemma 2.1 and Theorem 3.1, we can easily obtain the following
corollary.

Corollary 3.1. Let E, F,K,C, Wand P be as in Theorem 3.1. Suppose
that X is a nonempty bounded convex subset of E and L(E,F) is
equipped with the topology of bounded convergence. Let 7: XX X—FE be a

2UEPR 5 multifunction. Assume that the following

function. and 7T:X—
conditions are satisfied;

(1) T is generalized C—pseudomonotone w.rt. 7

(2) T is generalized hemicontinuous w.r.t. 7;

(3) for each se L(E,F) and x€ X, <s,7(*,x)> is P—convex;

(4) for each x€X, 7(-+,x) is continuous where both X and F are
equipped with the weak topologies;

(5) for any s€ L(E,F) and x€X, <s, 7(x,x)> € P; and

(6) for each finite subset N of X, there exists a nonempty weakly compact
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convex subset Ly of X containing N such that for each x& Ly\ K, there

exists y& Ly such that for any t€ Ty, —<{t, 5(x,y)>e — intCx.

Then there exists x€ K such that for each ye X, there exists s€ Tx

such that <s, 7(y, x)> ¢ — intCx.
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