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ABSTRACT.

This paper deals with the approximate controllability for semilinear
system with time delay in Hilbert space. After the problem for exis-
tencs and uniqueness of solution of the given system with the more
general Lipschitz continuity of nonlinear operator f from R x V to H
is established, it is shown that the equivalence between the reachable
set of the semilinear system and that of its corresdonding linear sys-
tem. Finally, we make a practical application of the condition to the
system with only discrete delay.

1. INTRODUCTION

Let H be a Hilbert space and V be imbedded in H as a dense
subspace. The dual space of V' denoted by V*. In this paper we deal
with control problem for semilinear parabolic type equation in Hilbert
space H as follows.

(1.1)
d =A A h ’ A d
am(t) =Aoz(t) + Ajz(t — h) + /_h a(s)Az(t + s)ds
+ f(t,z(t)) + Bu(t), te€ (0,T).

Let Ay generate an analytic semigroup in both H and V*. Then the
equation (1.1) may be considered as an equation in both H and V*.
Let the operators A; and A; be a bounded linear operators from V
to V* and a(-) be Hélder continous. The nonlinear operator f from
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R x V to H is Lipschitz continuous. The first part of this paper is
to give wellposedness and regularity in section 2. This approach is
closed to that in [2,3] mentioned above. We will give the result by
using the intermediate property and contraction mapping principle.
Next, under more generalized the range condition of the controller
than of in [6,8,9,15], we establish that the approximate controllability
for semilinear system is equivalent to that of its corresponding linear
system in section 3. It is known that the reachable set for linear sustem
that is the set of all trajectories cerresponding to given control set is
independent of the time. By proceeding to derived to the equivalent
condition between semilinear and linear control system we can proof
the approximate controllability of semilinear system as checking it at
some time

There are many literature which deal with structural properties for
the linear system( the case where f = 0) in [1,2,10,13] and S. Nakagiri
[10] has dealt with structural properties and solution semigroups asso-
ciated with (1.1). The controll proplem of general initial volue problem
without delay term was discussed frequently as in [8,9,11,15]. With the
aid of the solution semigroup and fundamental solution of (1.1) that
was constructed in [13], the equation (1.1) can be also transformed
onto an abstract equation

(1.2) %z(t) = Az(t) + F(2(t)) + Bu(t)

in the product space Z = H x L?(—h,0; V). Therefore we can also ap-
ply the result in [15] to this system, but we want to obtain more general
conditions for retarded system (1.1) without time restriction in [15]. In
[8, 9, 11, 14], the authors showed the approximately controllable under
assumption that the nonlinear term f(¢,z(¢)) is uniformly bounded.
The control problem of (1.2) that the semigroup generated by Ag is
compact operator was obtained by K. Naito [8,9] using topological de-
gree theory. Now we note that the semigroup generated by A associated
with the equation (1.1) is not compact operator and the generator Ag
is unbounded in general (see theorem 5.3 in [2] ). But by virtue of the
result in Aubin [1}, by assumption the imbedding D(A4y) C V is com-
pact we will show that the solutuin mapping from admissable set to
the set of all trajectories associared with control function is compact.
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Thus, by topological degree theory we can obtain the equivalence con-
ditions between the reachable trajectory set of the semilinear system
and that of the associated with linear system. We also give an example
that the the condition of nonlinear term can be checked in section 4.

2. WELLPOSEDNESS AND REGULARITY

We consider the problem of control for the following retarded func-
tional differential equation of parabolic type with nonlinear term

(2.1)
%w(t) =Agz(t) + A2z(t — h) + [-h a(s)Aqz(t + s)ds
+ f(t,2(1)) + Bu(?),
(22)  2(0)=¢°, x(s)=g'(s), s€[-h0)

in Hilbert space in H. Let V be another Hilbert space such that
V ¢ H c V*. Therefore, for the simplicity, we may regard that
[u|l« < |u| < ||u|| for all v € V where the notations |- |, |- ]| and || - ||«
denote the norms of H, V and V* respectively as usual. Let a(u,v)
be a bounded sesquilinear form defined in V x V satisfying Garding’s
inequality

(2.3) Re a(u,u) > collull® —cilul’, ¢ >0, a >0
Let Ao be the operator associated with a sesquilinear form
(2.4) (Aou,v) = —a(u,v), u, veV.
Then the operator Ay is a bounded linear from V to V*. Identifying the
antidual of H with H we may consider V C H C V*. The realization
of A in H which is the restriction of Ag to
D(Ao)z {u € V:Agu € H}
is also denoted by Ag. It is known that A, generates an analytic

semigroup in both H and V*. Assume that (2.3) holds for ¢; = 0
noting that Ag + ¢; is an isomorphism from V' to V* if ¢; # 0.
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We may assume that the imbeddong D(Ay) C V is compact and
(D(Ao), H)1/2,2 =V satisfying

(2.5) llull < CillullFes, lul*?

for some a constant C; > 0 where (D(Ao), H)s,p denotes the real in-
terpolation space between D(A4,) and H.

The operators A; and A, are bounded linear operators from V to
V* such that they map D(Ay) into H. The function a(-) is assumed to
be a real valued Holder continous in [—A, 0] and the controller operator
B is a bounded linear operator from some Banach space U to H. Let
f be a nonlinear mapping from R x V into H. We assume that for any
z1, 3 € V there exists a constant L > 0 such that

(2.6) |f(t,21) = f(t,22)] < L||z1 — 24|
2.7) £(£,0) = 0.

LEMMA 2.1. Let T > 0. Then
T
H={zeV* :/ [[Aoe'*oz|[2dt < oo},
0

where || - ||, is the norm of the element of V*. Therefore, we have that
H=(V, V*)%J satisfying

] < el [ u] |«
for every u € H.
Proof. Put u(t) = e*4oz for z € H. From

1d

5 g PO = Re (i(t), u(t)) = Re (Aou(t), u(?))

= — Re a(u(t), U(t)) < —COHU(t)”25

it follows
1 d

5 5 1OF + ol <.
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By integrating over ¢ yields

T
L o [ u(olfde < glel”

Hence, we obtain that

T T
/ ||AseAz||2dt < / l[u(s)||?ds < oo.
0 0

Conversely, suppose that z € V* and fOT ||AgetAez||2dt < co. Put

u(t) = e*4oz. Then since Ao is an isomorphism from V to V* there
exists a constant ¢ > 0 such that

T T T
U 2 C oU 2dt=c getA":z 2dt.
/0 llu(®)]2dt < [ | Agu(t)| 2t / | Aget Ao [2dt

From the assumptions and u(t) = Age*4°z it follows
w € LX0,T; V) n W 2(0,T; V*) ¢ C([0,T}; H).
Therefore, z = u(0) € H.

By virtue of Lemma 2.1, replacing intermediate space F' in the paper
[2] with the space H, we can derive the results of G. Blasio, K. Kunisch
and E. Sinestrari [2] regarding term by term to deduce the following
result.

PROPOSITION 2.1. Let g = (¢%¢%) € Z = H x L*(~h,0;V) and
f € L?(0,T;V*). Then for each T >0, a solution z of the equation
(2.1) and (2.2) belongs to

L*(0,T; V) nWh?(0,T; V™) € C([0, T); H).
Moreover, for some constant Ct we have

Nzl 20 movynwro,rvey SCr(1g°] + 119 llLz(=hov)
+ 1fll20,mvey + llullz20,m0))s

where

|- Hlz2co,mvyawr2o,myve) = max {1 - |20, 7v), I llwrzeo,m5v) }-
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THEOREM 2.1. Under the above ass
nonlinear mapping f,

(2.2) such that

umptions (2.6) and (2.7) for the

then there exists a unique solution z of (2.1) and

z € L*(0,T; V) nWh2(0, T; V*)  ¢([o, T); H).

for any g = (¢°,g') € Z = H x L2

(=h,0; V). Moreover, there exists a
constant C such that

llll2(0,7:v)aw.20, 750y < C(1g°] + N9 22 (=07 + Ilull 120, 7,1))-
Proof. Let us fix T € (0, h) such that

(2.8) CiCrL(T/V2)F < 1.
For i = 1, 2, we consider the following equation.

d 0

Eyi(t) =Aoyi(t) + Aryi(t — h) +f a(s)Azyi(t + s)ds

—h
+ f(t,2:(t)) + Bu(t), t €(0,T)
¥i(0) =¢°,  wi(s) = ¢'(s), s € [=h,0).

Then

) = 00) =41 (1) 1) + A ot — 1) — ot )

+ [ a6 alin(t +5) — gt + 5))ds
—h

+f(t7$1(t)) _f(ta'z'?(t))’ te (0’ T]
¥1(0) = 42(0) =0,  y;(s) — ya(s) = 0, s € [—h,0).

From Theorem 3.3 of [2] and (2.6) it follows that

[ly: — y2,'L’(O,T;D(Ao))ﬁWl:?(O,T;H) <Crllf(,z1) - Gzl 20,7y,

1f(y 1) - f('al?)“L’(O,T;H) < Li|lzy - z2l|22¢0, 71 -
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Using the Holder inequality we also obtain that
(2.9)
T 1
llyr = v2llL2c0,mim) = {/ lya(t) — ya(2)|*dt}?
0
T t )
([ 1 [ ) = in(rparay
o Jo
T t .
<[ ¢ [t - ia(rParay?
0 0 ‘
vT

< —2—||y1 — ya|lwr2(0,1;H)-

Therefore, in terms of (2.5) and (2.9) we have

1 1
lly1 — ya2llz20,mv) < Cillyr — y2||zz(o,T;D(Ao))”yl - y2”12,2(0,T;H)

1 T .. 1
< Cillya = y2”f,2(0,T;D(AO))(E)2 |lyr — yZHéVl,z(o,T;H)
L
< Cl(ﬁ)’ ly1 — yallz2(0,7;D(40)) W1 2 (0, T H)
BN\
< ClcT(TQ—)% FC21) = £ z2)llL20,mem)

T .
< CICTL(E)"’ llz1 — 22||L2(0,7;v)-

So by virtue of the condition (2.8) the contraction principle gives that
the equation of (2.1) and (2.2) has a unique solution in [—h, T].

Let z(-) be a solution of (2.1) and (2.2) and y(-) be a solution of

following equation.

d 0
V0 =Aoy(t) + Ayt = 1) [ a(6)Aay(t + 5)ds

+ Bu(t), t € (0,T]
y(0) =¢°, w(s) =g'(s), s € [—h,0).
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Consider the following problem:

2(a(0) ~ y(1)) =Ao(a(t) — U(t) + Ax(alt = B) — y(¢ — h)
+ [ alo)ala(t+5) = olt +9)ds + fit, (1),

2(0) —y(0) =0, z(s)—y(s) =0 s € [=h,0).

In virtue of Theorem 3.3 of [1] we have

Iz — yllz2(0,7:D(40))awr20,11) < CTlI (o 2)| 1200, 7 80)
< CrL||z||p2(0,7:v)
S CrL (||lz = yllz2(0,1;v) + IYllL200,75v))-

Combining (2.5), (2.9) and above inequality we have

1 L
||z — y”L2(0,T;V) < Cillz — yl|12,2(0,T;D(Ao))”3C - y”zz(o,T;H)
1 T 1
< Cillz ~ ylliz(o,T;D(Ao)){7—2—||~"c = yllwi20,15m)} 2

T 1
< CI(E)"’ llz — yllr200, 7500 40)) W20, 1)

T
< CI(E)%CTL(HSU = yllz20, vy + ¥llL200,73v))-

Therefore, we have

C CTL(—L)%
e

|z = yllL20,m3v) <
©1v) 1-GiCrL( L)}

(2.10)

|I$”L2(0,T;V) < 1 ”y'le(g’T;V).

1-CiCrL(%)s
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Combining Proposition 2.1 and (2.10) we obtain

Hx||L2(0,T;V)nW1:2(0,T;V*)

<Cr(|go| + llg* 20, 75v) + 1F ()20, 15v %)
+ |[ull2(0,7:1))

<C1(l¢°| + 19" |L2¢0,;vy + Lllzll2(0,T;v)
+ lullz2(0,750))

<Cr(lgo| + 19" | z2(0,75v) + llullz20,T:07)

L
7 llyllL20,7;v))
1- C]CTL(W)2

<Cr(lgo| + llg* 220, ;v) + llullL2(0,7:17))

LCr o .
1 + :
1- CICTL(%)E (lg”1 + llg" Nl L20,15v)

+

+

+ llullz2e0,7:v))
<C(lgol + llg* | 2(0,7,vy + llullL2(0,7:0)-
Since the condition (2.8) is independent of initial value, the solution of
(2.1) and (2.2) can be extended to the interval [~h,nT] for a natual
number n, that is, we can prove the estimate mentioned above also

in the interval [T,2T) with initial data (z7,z(T)). So the proof is
complete.

3. APPROXIMATE CONTROLLABILITY FOR RETARDED SYSTEM

Let x(t; f,w) be a solution of the following equation associated with
nonlinear term f and control function w at time T'.

:cl(t) = Agz(t) + Arz(t — h) + / . a(s)Azz(t + s)ds

(3.1)
f(t,z(t)) + (Bu)(t), 0<t<T,

z(0)=0, z(s)=0 —-h<s<0,

where B is bounded linear operator from L%(0,T;U) to L*(0,T; H).
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We define reachable sets for the system (3.1) as follows:

R7(0) = {«(T;0,u) :u € LZ(O,T; U)},
Ry(f) = {z(T; f,u) : uw € L*0, T; U)}.

If Rr(f) = H where Rp(f) is the closure of Rp(f) in H then the
system (3.1) is called approximate controllable. Let G(t) be an analytic
semigroup generated by Ag. We now define the fundamental solution

W(t) of (3.1) by

d { AW (t) + AaW(t — h) = [°, a(s) A, W(t + s)ds, 0<t
—W(t) =
dt W0O)=I, W(s)=0 s<[-h,0).

According to the above definition W () is a unique solotion of

0

a(7)A2 W (s + 7)dr }ds
3

W(t) = G(t) +/t G(t — s){ A, W(s — h)+/

for ¢ > 0 (cf. S. Nakagiri [5]). The initial value problem (3.1) has a
unique solution satisfying the integral equation. The solution of (3.1)
is expressed by

z(t) = W(t)g° + /_h Ut(s)gl(s)ds + /0 W(t —7)f(r,z(7))dr,

U(s) =W(t—s—h)A; + /—Sh W(t — s+ o)a(o)Azdo

Consider the following semilinear equation which is described by
control system on H where the controller B is the identity operator:

0

x'(t) = Apz(t) + Arz(t — h) + / . a(s)Azz(t + s)ds

(3.2) flt,z(t)) +u(t), 0<t<T,

z(0) =0, z(s)=0 —-h<s<0,
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The solution y, is given by

yult) = / Wt = $){f(s,ya(s)) + u(s)}ds,

for0<t<T.
We can define the nonlinear operator F on L%(0,T; H) by

(Fu)(t) = f(t,yu(t)), we L*(0,T;H).

LEMMA 3.1. Let f € L?(0,T;H) and z(t) = fot W(t — s)f(s)ds.
Then there exists a constant C such that

||$||L2(0,T;V) < Cﬁ”f”L’(O,T;H)-

Proof. By the similary way of Theorem 2.3 of [2] it holds that

(3:3) llzllz2(0,7,D(40)) < Cl|fIL2(0,1;10)-
By using Holder inequality,

T t
20,2500y = [ | / Wit — 5)f(s)ds|2dt
T t
2 2
<M / ( / |F(s)lds)? dt
T t
§M2/0 t/o [£(s)|?dsdt

T2 t
<3 [Cirepas
2 Jo
Therefore

(3.4) lz||z2¢0,7;5) £ MT||f||L2¢0,1:1)-

Combining (3.3) and (3.4) we have that

Hx”%?(O,T;V) < CTM\/T”f”%’(O,T;H)'
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LEMMA 3.2. Let z, be a solution of (3.2). Then for T > 0 there
exists a constant C such that

|FullL2(0, 7,0y < LCVT/(1 — LOVT)||ul| 20,7 10)-

Proof. From Lemma 3.1 it follows that

| Fullz20,7;m) < Ll|Tullz20,1;v)

< LH/0 W(t — s){Fu)(s)}dsl|L2¢0,1;v)

t
LI / Wt — ) {u(s) sl 2 0,mov)
0
< LC\/T”-FUHL%O,T;H)
+ LC\/THUHL?(O,T;H)

where we set || f(t)||12(0,75v) = |IfllL2¢0,1;v)-
Let
T
N = {pe LOT;H); [ S(T - 9ps)ds =0)
0

and its orthogonal space in L?(0,T; H) by N+.

We denote the range of the operator B by Hg. We need the following
assupmtion:

(A) Let Hp be closed and for each p € L%(0,T; H) there exists
¢ € Hp such that

T T
/0 W(T — s)p(s)ds = /0 W(T — s)q(s)ds,

that is, L2(0,T; H) = Hg + N.

As is seen in [4] it need not assume the range of the operator B is
closed, but for the sake of simplicity we assume it in what follows. The
meaningful of this assumption is considered in section 4.

Let P; be the projection on L%(0,T; H) with the range N+. For
every u € N1, taking by Pu as the unique minimum norm element in
{u+ N} N Hp we can define P as the mapping from N+ to Hg. So,
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we know that u — Pu € N and Pu € Hg. Let Y = L?(0,T; H)/N be
the quotient space with norm ||§|| = inf{|y + f|: f € N}. Let

Fi=P;-F-Pia, €Nt
Then from Lemma 3.2 it follows
\Fiill 20,750y < LCVT/(1 — LCVT)||P||lullL2(0.7: 1)

We will show that F is a compact operator.

THEOREM 3.1. Under the above assumption (A), we have

Rr(0) = Rr(f) = H.

Therefore, the system (3.1) is approximately controllable.

Proof. Under assumption (A) it is known that R(0) = H as is seen
in [8]. Thus it suffices to prove that R7(0) C Rr(f). The solution of
(3.1) is

ofti frw) = [ Wt =9){f(s.2(53Fo) + (Bu)(s)}s,
and from Theorem 2.1 it follows

lz(t; f,0)| 20, 75v)nwr2(0,15v) < Cllullz2¢0,1;0)-

The estimate of solution of (3.2) defined by y, is

Iyullzzo,vynwr2o,75v+) < Cllul|z2(0,7.01)-

Since y, € L?(0,T;V) we have f(-,y,) € L*(0,T; H), and hence y, €
L%(0,T;D(A)) N W'2(0,T; H) by Theorem 3.2 in [2],

(3.6)
lyullzzco, 1,y awr 20,1y < ClFC ya) + ullp2(0,7:8))
< Clyullzzco,1:vy + llullz2(0,7;my) < Cllull 20, ;1)
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In virtue of Theorem 2 in [1], we know that imbeding L?(0, T; D(A))N
W12(0,T; H) C L*(0,T;V) is compact since imbedding D(A) cVv
is compact. If u is bounded in L%(0,T; H) then from (3.5) it follows
that y, is also bounded in L?*(0, T D(A)) N wW12(0,T; H), and hence
it 1s relatively compact in LZ(O,T; V)). Thus, the mapping U Yy
is a compact operator from L%(0,T;U) to L?(0,T; H) and F is also a
compact operator from L2(0,T; H) into itself.

Let ¢ € R7(0). Then by virtue of the asumption (A), there exists a
control function v € L%(0,T;U) such that

T
¢ = / W(T — s)Buv(s)ds.
0
Take a time T > 0 suffidiently small such that
1
(3.7) LCVT||P|| < -

where the constants are in Lemma 3.2. Put Z = P;Bv and C; =
LCVT||P||. Then we can take a constant such that

1-C1 .
2C1||z|| < R.

Let Ur = {#i € N+ : ||@|lv < R} be the open ball in N*. Then since
(1-C1)/(1-2Cy) > 1it follows Z € Ug. Let us consider the equation

=\Fi+4 0<A<LL

(S )

Then

llall < [12]] + I|fﬁll

<2+ 5

Thus

lall < F5 12l <
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that is, & ¢ OUg for 0 < A < 1 where 8Ug stsnds for the boundary
of the open ball Ug. Thus by the homotopy property of degree theory

there exists a control set u € Uy such that 5 = Fii + 4. Put up = Pu.
Then

zZ= ]:(UB) + PJUB.
From that for every p € L?(0,T; H)
t t
/ W(t —s)Pjp(s)ds = / W(t—s)p(s)ds, 0<t<T
0 0

it follows that
T
6= / S(T — s)\(F(up)(s) + up(s)ds

:/0 S(T = $)(f(5,yup () + un(s))ds.

Since up € Hp there exists a control function w € L%(0,T;U ) such
that up = Bw. Hence we obtain that

¢ = z(T; f,w).

Hence for sufficiently small T, we have proof that Rp(0) C Rr(g).
But since Ay generates an analytic semigroup, Rr(g¢) is independent
of the time T. Thus, we can apply this procedure on each interval
[(n—1)T,nT] where the time T satisfies (3.7) and n is natural number.

4. EXAMPLES

Let us consider the following equation

(1) z (t) = Aoz(t) + Arz(t — ) + f(t,2(t)) + (Bu)(t), 0<t,
' 2(0) =0, z(s)=0 —-h<s<O.

where the controller B is a bounded linear operator from L?(0,T; H).
to itself. Then the fundermental solution of (4.1) is

(4.2) W(t) =§n:9-;!—j)fA{T(t—j) telnn+l], n=1,2, ..

§=0
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which is not norm continuous at ¢t = 1, 2,

In what follows we assume the imbedding V C H is compact and
Ay is a self adjoint operator; In virtue of the Riesz-Schauder theorem,
if the imbedding V C H is compact then the operator Ay has discrete
spectrum

o(Ao)={pn:n=1,2, ...}

which has no point of accumulation except possibly p = co. Let un be
a pole of the resolvent of Ag of order k, and P, the spectral projection
associated with p,

P, 2m/ (p— Ao) ™ du,

where T',, is a small circle centered at u, such that it surrounds no point
of 0(Ao) except pn. Then the generalized eigenspace corresponding to
Un 1S given by

H,=P,H = {Pyu:u€ H},

and we have that from P2 P, and H, C V it follows that
P,V ={Pyu:u €V} =H,.

Let us set
1

= A — pn)(p — Ag) T dp.
Q % Pn(;u o)t — Ao) ™ dp

Then we remark that dim H, < oo and

Q. 2m/ (1 — pn) (1 — Ao) " ldp.

It is also well known that Q¥» = 0 ( nilpotent) and (Ao — fin)Pn = Qn.
If un € 0(Ap) then we have the Laurent expansion for R(p — Ao) =
(u— Ap)™! at p = pn, whose principal part ( the part consisting of all
the negative power of (u — p1n) ) is a finite series:

kn—1 Qi
+Y — 4R
2 Gy )

P,

R Ap) =
(B = Ao) = —— -

where Ro(p) is a holomorphic part of R(u — Ao) at p = pin.
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DEFINITION 4.1. The system of the generized eigenspaces of Ag is
complete in H if Cl{span{H, :n =1, 2, ... }} = H where Cl denotes
the closure in H.

First of all, for the meaning of assumption (A) in section 3 we need
to show the existence of controller satisfying

CY{Bu:u € L*0,T;U)} # L*(0,T; H).

In fact, Consider about the controler By defined by

B’U.(t) = Z u’n(t)a

where

{ 0, 0<t<ZI
Up =
Pru(t), z <

Hence we see that ui(t) = 0 and u,(t) € Im P,. By completion of
generalized eigenspaces of A9 we may write that f(t) = Y o7 P,f(t)
for f €L?(0,T; H). Let us choose f €L?(0,T; H) satisfying

T
/ 1P F()]2dt > 0.
0

Then since

T T oo
| sy = Bucipar = [T 2oy - Buco P

T T
> [C 1P (£0) - Buto)|ae = | ipseea o,

the statement mentioned above is reasonable.

PROPOSITION 4.1. Let the system of the generalized eizenspaces of

Ag be complete. Then If for every p € L*(0,1; H) there exists ¢ € Hp
such that

Skz
Z/ -*"’( ) ST QAP(s) —als))ds
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forn=1, 2,..,1=0, ... ,k,—1 then the system (4.1) is approximately
controllable.

proof. Let G(t) be the semigroup generated by Ag. Then we give
an expression of the semigroup that

G(t)f = et Z Q' f, t=0
for any f € P,H. From (4.2) it holds
1 1
/0 W(L — s)p(s)ds = / G(1 — s)p(s)ds
Z

>

n=1 1=

n

/ 2t — 5)' QL p(s)ds

3
—

i z'(k Ak — o) / e (—s)* ' Qrp(s)ds.

k=1

(=]

Since the function ¢ — e*»*t! is linear independent, the above equality
is equivalent to the fact that

kn—1

/ el Qlp(syas

forn=1, 2,...,i =0, ..., k,—1. Thus, we can rewrite the assumption
(A) in section 3 as our result.

Example 1. Let 1 < a < T < 2 and define a cutting controller at
time o on L%(0,T; H) by

(B = {

u(s), 0<t<a
0, a<t<T.

From funfamental solution (4.2) we know that
T 1
/ W(T — s)p(s)ds = / G(T — s)p(s)ds
0 0

+ /1T(T ~ s —1)AG(T — s — 1)p(s)ds
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for p € L2(0,T; H) Put

p(s), 0<s<1

p(s+T—a) l1<s<a
u(s) = 1 T-«

+55G(s) f; T G(T — a —r)p(r)dr,

0, a<s<T.

Then it is immediately seen that the operator B satisfies the assump-
tion (A).
Example 2. Let »
H =L*0,7), V = Hy(0,7), V* = H™1(0,),
a(u,v) :/ u(z)v(z)dx
0
and
Ag = d*/dz* with D(A4y)= {y € L*(0,7) : y(0) = y(r) = 0}.

The eigenvalue and the eigenfunction of Aq are )\, = n? and én(z) =
Vv 2/7 sinnz, respectively. The solution of the following equation

d
Zalt) = Aoa(t) + Ara(t = 1) + £(2)
with initial date 0 is

jg e(t=9)4o f(5)ds 0<t<l1
z(t) = fot e(t=9)4o f(5)ds 1<t<?2
+Ap fy(t — s — 1)e(t=3=DAo f(5)ds.

Hence,

2
2(2) = /0 =40 f(5)ds + Ay /0 1(1—3)6(1_3)’4" f(s)ds.

Let £ € D(A4p) and

0 O<s<xl

f(s)z{g—(s—nAog 1<t<2.

-105-



Weon-Kee Kang

Then it follows that z(2) = £. Thus

Ry (0) ={ / W(t - )f(s)ds : f € LX(0,2; H)}

2 1
— (2_3)A0 S ds — 3 e(l—s)Ao d .
{/Oe £(s) +Ao/0(1 ) £(s)ds
f € L*0,2;H)}

is a dense subspace. Put

oo

a(s) = Z an(s)Pn

n=1

Then since
2
/ W(t — s)a(s)ds
0
1 2 o0
___/ Zan(S)e_(z")""d)nds-{—/ Zan(s)e_(2—”)’\"¢nd8
0 n=1 1 n=1
1 o©
- / Z an(s)(1 = s)/\ne_(l“s)’\" dnds
0 n=1
1 oo
= / D an(s){e” P =2 (1 = 5)em (17 Ydsg,
0 n=1
2 oo
+/ Zan(s)e_(z_’)’\"dsqbn
1 n=1
oo 1
= Z[/ an(s){e_(2_’)’\" —An(l— s)e—(l_s)”\"}d.s
n=1 0

2
+ / an(s)e” 279 ds)g,,
1

it holds that )
/ W(t— s)a(s)ds =0
0
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if and only if
1 2
/ an(s){e”ZDMn ) (1=5)e~(1=)An }ds+/ an(s)e”272nds = 0.
0 1

Therefore, the assumption (A) is equivalent that for every p(-) =

Yo Pa(*)én € L*(0,2; H) such that ¢(-) =Y oo, gn(-)¢s € Hp such
that p, — ¢, is orthogonal to

ba(s) e — Ap(1 = s)erGH) 0<s <1
s) =
" errs l<t<?2

for every n.
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