Journal of the Research Institute of Basic Sciences, Korea Maritime University, Vol. 4, 1994.

Applications of Himmelberg's Fixed Point Theorems to Fuzzy Mappings

Sang Ho Kum

Department of Applied Mathematics, Korea Maritime University, Pusan, Korea

1. Introduction

In a series of recent papers, Chang[1,2,3,4] developed many theorems on fixed point theory and on variational inequalities into fuzzy setting, from a theoretical point of view, in a variety of situations.

In this paper, along the same lines, we present three applications of the well-known Himmelberg fixed point theorem [5] to the existence of cyclical coincidences, and of the equilibrium points of generalized games and of solutions of generalized quasi-variational inequalities for fuzzy mappings.

2. Preliminaries

For the terminologies and notations, we mainly refer to [4] and [9]. In this paper multifunctions and fuzzy mappings are always denoted by capital letters and single valued functions are denoted by small letters. For topological spaces X and Y, a multifunction $F: X \to Y$ is said to be upper semicontinuous(u.s.c.) provided for each open subset V of Y, we have $\{x \in X | Fx \subset V\}$ is open in X; and lower semicontinuous(l.s.c.) provided for each open subset V of Y, we have $\{x \in X | Fx \cap V \neq \emptyset\}$ is open in X. Also, F is continuous if F is u.s.c. and l.s.c.. F is declared compact if the range F(X) is contained in a compact subset of Y.

On the other hand, a mapping T from X into F(Y) the collection of all fuzzy sets over Y is called a fuzzy mapping over X. If T is a fuzzy mapping over X then T(x) (denoted by T_x in the sequel) is a fuzzy set over Y, and $T_x(y)$ is the degree of membership of the point y in T_x . When Y has linear structure, the fuzzy mapping T over X is said to be convex provided for any $x \in X$ the fuzzy set T_x is convex, i.e. for any $t \in [0,1]$ and any $y,z \in Y$ it is true that $T_x(ty+(1-t)z) \geq min\{T_x(y),T_x(z)\}$. The fuzzy mapping T is closed if and only if the membership function $T_x(y)$ is u.s.c. over $X \times Y$ (as a real function). Let $A \in F(Y), \alpha \in (0,1]$. Then the set

$$(A)_{\alpha} = \{ y \in Y | A(y) \ge \alpha \}$$

is called a α - cut set of A.

From now on, otherwise specifically mentioned, all topological spaces are assumed to be Hausdorff, E denotes a real Hausdorff locally convex space, and E^* its topological dual space equipped with the strong topology. For a nonempty subset Y of E, cc(Y) denotes the set of all nonempty closed convex subsets of E contained in Y. Let X be nonempty convex subset of E. A real valued function $f: X \to R$ is said to be quasi-concave, if for every real number t, the set $\{x \in X | f(x) \ge t\}$ is convex.

The following result is our starting point.

Proposition 1. (Himmelberg [5,Theorem 2]) Let X be a nonempty convex subset of a Hausdorff locally convex space E. Let $F: X \to cc(X)$ be a compact u.s.c. multifunction. Then F has a fixed point.

Using this proposition, we can prove Proposition 2 and 3 in the following Section 3.

3. Main Result

We begin with a non-compact version of Simon's result [12, Theorem 2.5].

Theorem 1. Let n be a positive integer and, for each $i \in Z_n$, let X_i be a nonempty convex subset of a locally convex space E_i and $T_i: X_i \to cc(X_{i+1})$ a compact u.s.c. multifunction. Then there exists $(x_0, x_1, \dots, x_{n-1}) \in X_0 \times \dots \times X_{n-1}$ such that for all $i \in Z_n, x_{i+1} \in T_i x_i$. Here $Z_n = \{0, 1, \dots, n-1\}$ stands for the additive group modulo n.

Proof. In case when n=1 Theorem 1 is essentially Proposition 1. We assume that $n \geq 2$. Let $X = X_0 \times \cdots \times X_{n-1}, E = E_0 \times \cdots \times E_{n-1}$ and define $T: X \to 2^X$ by

$$T(x_0, x_1, \dots x_{n-1}) = T_{n-1}x_{n-1} \times T_0x_0 \times \dots \times T_{n-2}x_{n-2}$$

for $(x_0, x_1, \dots, x_{n-1}) \in X$. Then T is a compact u.s.c. multifunction with nonempty compact convex values. Indeed, each T_i is u.s.c. and compact convex valued. Hence the product map T is u.s.c. and compact convex valued by virtue of Lassonde [10,Proposition 1 (5)]. It remains to show that T is compact. But this is also immediate because T_i is compact. By Proposition 1, T has a fixed point $(x_0, x_1, \dots, x_{n-1}) \in X$, i.e. $(x_0, x_1, \dots, x_{n-1}) \in T(x_0, x_1, \dots, x_{n-1})$. This gives the required result.

This type of (x_0, \dots, x_{n-1}) is called a *a cyclical coincidence point* in Simons [12]. Now we are ready to give our first main result about the existence of cyclical coincidences for fuzzy mappings.

Theorem 2. Let X_i and E_i be as in Theorem 1. Let K_i be a nonempty compact subset of X_i and $T^i: X_i \to F(K_{i+1})$ a closed convex fuzzy mapping for $i \in Z_n$. Suppose that for each i, there exists a l.s.c. function $\alpha_i: X_i \to (0.1]$ such that for any $x \in X_i$ the cut set $(T_x^i)_{\alpha_i(x)} = \{y \in K_{i+1} | (T_x^i)(y) \geq (0.1) \}$

 $\alpha_i(x)$ is a nonempty subset of K_{i+1} . Then there exists $(x_0, x_1, \dots, x_{n-1}) \in X_0 \times \dots \times X_{n-1}$ such that $T_{x_i}^i(x_{i+1}) \geq \alpha_i(x_i)$ for all $i \in Z_n$.

Proof. Define $\widehat{T}_i: X_i \to 2^{K_{i+1}}$ by $\widehat{T}_i(x) = (T_x^i)_{\alpha_i(x)}$ for all $x \in X_i$.

Claim 1. \widehat{T}_i is closed convex-valued, hence compact convex-valued. In fact, for any $y, z \in (T_x^i)_{\alpha_i(x)}$ and any $t \in [0.1]$ we have

$$T_x^i(ty + (1-t)z) \ge \min\{(T_x^i)(y), (T_x^i)(z)\} \ge \alpha_i(x).$$

This implies that $ty + (1 - t)z \in (T_x^i)_{\alpha_i(x)}$, that is, $(T_x^i)_{\alpha_i(x)}$ is convex. Next let $\{y_j\}_{j \in J}$ be a net of $(T_x^i)_{\alpha_i(x)}$ convergent to $y_0 \in K_{i+1}$. Obviously, $(x, y_j) \to (x, y_0)$.

As T^i is closed, we have

$$(T_x^i)(y_0) \ge \limsup_j (T_x^i)(y_j) \ge \alpha_i(x).$$

This show that $y_0 \in (T_x^i)_{\alpha_i(x)}$, i.e. $\widehat{T}_i(x)$ is closed.

Claim 2. \hat{T}_i is u.s.c..

It suffices to show that the set

$$graph(\widehat{T}_i) = \bigcup_{x \in X_i} \{(x, y) | u \in \widehat{T}_i(x)\}$$

is closed in $X_i \times K_{i+1}$ by means of Lassonde [10,Proposition 1 (2)]. Let $(x_j, y_j)_{j \in J}$ be a net of graph (\widehat{T}_i) and $(x_j, y_j) \to (x_0, y_0)$ in $X_i \times K_{i+1}$. Since T^i is a closed fuzzy mapping, we have

$$(T_{x_0}^i)(y_0) \ge \limsup_j (T_{x_j}^i)(y_j) \ge \limsup_j \alpha_i(x_j) \ge \liminf_j \alpha_i(x_j) \ge \alpha_i(x_0).$$

Hence $y_0 \in \widehat{T}_i(x_0)$, i.e. $(x_0, y_0) \in \operatorname{graph}(\widehat{T}_i)$, as desired.

It is obvious that \widehat{T}_i is compact because $\widehat{T}_i(X_i) \subset K_{i+1}$. Applying Theorem 1, we conclude that there exits $(x_0, x_1, \dots, x_{n-1}) \in X_0 \times \dots \times X_{n-1}$ such that $x_{i+1} \in \widehat{T}_i(x_i)$, i.e. $T^i_{x_i}(x_{i+1} \geq \alpha_i(x_i))$ for all $i \in Z_n$. This completes the proof.

In case when n = 1, Theorem 2 reduces to the following.

Corollary 1. Let X be a nonempty convex subset of a locally convex space E. Let K be a nonempty compact subset of X and $T: X \to F(K)$ a closed convex fuzzy mapping. Suppose that there exists a l.s.c. function $\alpha: X \to (0,1]$ such that for any $x_0 \in X$ such that $T_{x_0}(x_0) \ge \alpha(x_0)$.

Remark. If X is compact and K = X, Corollary 1 is due to Chang [2, Theorem 5 (i)]. So Corollary 1 is a generalization of Chang's result to non-compact case. Also Corollary 1 is a fuzzy version of Himmelberg's fixed point theorem [Proposition 1]. When n = 2, Theorem 2 is an interesting result.

Our second result is concerned with the existence of equilibrium points in generalized games. A generalized game is a game in which the choices of players cannot be made independently: each player must select a strategy in a subset determined by the strategies chosen by the other players. For the sake of completeness, we introduce the following which is induced by Proposition 1.

Proposition 2. (Kum [8, Theorem 6.2.2], Kim [7, Theorem 2]) Let $\{X_i\}_{i\in I}$ be an indexed family of nonempty convex subsets each in a locally convex space E_i and $\{K_i\}_{i\in I}$ a correspondingly index family of nonempty compact subsets of X_i 's. For each $i \in I$, let $f_i : X = \prod_{i \in I} X_i \to R$ be a continuous function and $T_i : X^i = \prod_{j \in I, j \neq i} X_j \to cc(K_i)$ be a continuous multifunction such that $f_i(x^i, \cdot)$ is quasiconcave for all $x^i \in X^i$. Then there

exists a point $u \in X$ such that $u_i \in T_i(u^i)$, $f_i(u) = \max_{y \in T_i(u^i)} f_i(u^i, y)$ for all $i \in I$.

Theorem 3. Let X_i , K_i and f_i be as in Proposition 2. Let $T^i: X^i \to F(K_i)$ be a closed convex fuzzy mapping for all $i \in I$. Suppose that for each i, there exists a l.s.c. function $\alpha_i: X^i \to (0,1]$ such that for any $x^i \in X^i$, the cut set $(T^i_{x^i})_{\alpha_i(x^i)} = \{y \in K_i | T^i_{x^i}(y) \geq \alpha_i(x^i)\}$ is nonempty and the multifunction $x^i \mapsto (T^i_{x^i})_{\alpha_i(x^i)}$ is l.s.c.. Then there exists a point $u \in X$ such that

$$T_{u^i}^i(u_i) \ge \alpha_i(u^i)$$
 and $f_i(u) = \max_{y: T_{u^i}^i(y) \ge \alpha_i(u^i)} f_i(u^i, y)$.

Proof. We can prove in the same way as in Theorem 2 that for each i, the multifunction $\widehat{T}_i: X^i \to cc(K_i)$ defined by $\widehat{T}_i(x^i) = (T_{x^i}i)_{\alpha_i(x^i)}$ is compact u.s.c.. Moreover \widehat{T}_i is also l.s.c. by given conditions, whence \widehat{T}_i continuous. Therefore all conditions in Proposition 2 are satisfied, so there exists an $u \in X$ such that $u_i \in \widehat{T}_i(u^i)$, $f_i(u) = \max_{y \in \widehat{T}_i(u^i)} f_i(u^i, y)$. This means that

$$T_{u^{i}}^{i}(u_{i}) \ge \alpha_{i}(u^{i}) \text{ and } f_{i}(u) = \max_{y:T_{u^{i}}^{i}(y) \ge \alpha_{i}(u^{i})} f_{i}(u^{i}.y).$$

This completes the proof.

Now we are going to present our last result on generalized quasi-variational inequalities for fuzzy mappings. In the first place, we introduce the following.

Proposition 3. (Kum [9., Theorems 3 and 4]) Let X be a nonempty bounded convex subset of a locally convex space E. Let $S: X \to cc(X)$ be

compact continuous and $T: X \to cc(E^*)$ compact u.s.c. Then there exist an $x_0 \in Sx_0$ and a $y_0 \in Tx_0$ such that

$$\langle y_0, x_0 - x \rangle \leq 0$$
 for all $x \in Sx_0$.

In particular, if X is a normed linear space, the condition that X is bounded is superfluous.

Remark. The above Proposition is a generalization of Shih and Tan[11, Theorem 4] and Kim [6] under non-compact setting. Of course, Proposition 3 is obtained by using Proposition 1.

Theorem 4. Let X, E and E^* be as in Proposition 3. Let K and L be nonempty compact subsets of X and E^* respectively. Let $S:\to F(K)$ and $T:X\to F(L)$ be closed convex fuzzy mappings. Suppose that there exist two l.s.c. functions $\alpha:X\to(0,1]$ and $\beta:X\to(0,1]$ such that for any $x\in X$ the cut sets $(S_x)_{\alpha(x)}$ and $(T_x)_{\beta(x)}$ are nonempty. Assume further that the multifunction $x\mapsto (S_x)_{\alpha(x)}$ is l.s.c. on X. Then there exist an $x_0\in X$ and $y_0\in L$ such that $S_{x_0}(x_0)\geq \alpha(x_0)$, $T_{x_0}(y_0)\geq \beta(x_0)$ and

$$\langle y_0, x_0 - x \rangle \leq 0$$
 for all x with $S_{x_0}(x) \geq \alpha(x_0)$.

Proof. As we have seen in Theorems 2 and 3, we know that two multifunctions $\widehat{S}: X \to cc(K)$ and $\widehat{T}: X \to cc(L)$ defined by

$$\widehat{S}(x) = (S_x)_{\alpha(x)}, \qquad \widehat{T}(x) = (T_x)_{\beta(x)}$$

are compact u.s.c.. By hypothesis, \widehat{S} is continuous. Thus all conditions of Proposition 3 are fulfilled. Hence there exist an $x_0 \in \widehat{S}x_0$ and a $y_0 \in \widehat{T}x_0$ such that

$$\langle y_0, x_0 - x \rangle \leq 0$$
 for all $x \in \widehat{S}x_0$.

This (x_0, y_0) is a desired one.

Remark. We would like to point out the difference between Theorem 4 and Chang and Zhu [4, Theorem 1]: (i) in [4], T is assumed to be monotone together with some kind of lower semicontinuity whereas T is closed convex without monotonicity in Theorem 4; (ii) the interacting set Σ in Theorem 1 of [4] is no longer required to be open. But we imposed a stronger continuity condition on S, i.e. \widehat{S} is l.s.c.; (iii) the domain X need not be compact in Theorem 4.

References

- 1. Shih-sen Chang, Fixed point theorems for fuzzy mappings, Fuzzy Sets and Systems 17 (1985), 181–187.
- 2. Shih-sen Chang, Fixed degree for fuzzy mappings and a generalization of KyFan's theorem, Fuzzy Sets and Systems 24 (1987), 103-112.
- 3. Shih-sen Chang, Coincidence degree and coincidence theorems for fuzzy mappings, Fuzzy Sets and Systems 27 (1988),327–334.
- 4. Sih-sen Chang and Yuan-guo Zhu, On variational inequalities for fuzzy mappings, Fuzzy Sets and Systems 32 (1989), 359–367.
- 5. C.J.Himmelberg, Fixed point of compact multifunctions, J.Math. Anal. Appl. 38 (1972), 205–207.
- W.K.Kim, Remarks on a generalized quasi-variational inequality, Proc. Amer. Math. Soc. 103 (1988), 667–668.
- W.K.Kim, An application of Himmelberg's fixed point theorem to noncompact optimization problems, Bull. Inst. Math. Acad. Sincia 19 (1991), 147–151.
- 8. S.H.Kum, Ph.D. Thesis, Seoul National University (1991).
- S.H.Kum, A generalization of generalized quasi-variational inequality, J. Math. Anal. Appl., to appear.

- M.Lassonde, Fixed point for Kakutani factorizable multifunctions, J. Math. Anal. Appl. 152 (1990), 46-60.
- M.-H.Shih and K.-K.Tan, Generalized quasi-variational inequalities in locally convex topological vector spaces, J. Math. Anal. Appl. 108 (1985), 333–343.
- 12. S.Simons, Cyclical coincidences of multivalued maps, J. Math. Soc. Japan 38 (1986). 515–525.

