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1. Introduction

In a series of recent papers, Chang[1,2,3,4] developed many theorems on
fixed point theory and on variational inequalities into fuzzy setting, from a
theoretical point of view, in a variety of situations.

In this paper, along the same lines, we present three applications of
the well-known Himmelberg fixed point theorem [5] to the existence of cycli-
cal coincidences, and of the equilibrium points of generalized games and of

solutions of generalized quasi-variational inequalities for fuzzy mappings.

2. Preliminaries

For the terminologies and notations, we mainly refer to [4] and [9]. In
this paper multifunctions and fuzzy mappings are always denoted by cap-
ital letters and single valued functions are denoted by small letters. For
topological spaces X and Y, a multifunction F : X — Y is said to be up-
per semicontinuous(u.s.c.) provided for each open subset V of Y, we have
{r € X|Fz C V} is open in X; and lower semicontinuous(l.s.c.) provided
for each open subset V of Y, we have {x € X|Fz NV # ¢} is open in X.
Also, F' is continuous if F is u.s.c. and l.s.c.. F is declared compact if the

range F(X) is contained in a compact subset of Y.
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On the other hand, a mapping T from X into F(Y’) the collection of all
fuzzy sets over Y is called a fuzzy mapping over X. If T is a fuzzy mapping
over X then T(z) (denoted by T in the sequel) is a fuzzy set over Y, and
T.(y) is the degree of membership of the point y in T,;. When Y has linear
structure, the fuzzy mapping T over X is said to be convez provided for any
z € X the fuzzy set T is convex, i.e. for any ¢t € [0,1] and any y,z € Y it
is true that T, (ty + (1 — t)z) > min{T:(y), T=(2)}. The fuzzy mapping T is
closed if and only if the membership function T,(y) is u.s.c. over X x Y (as
a real function). Let A € F(Y),a € (0,1]. Then the set

(A)a ={y € Y|A(y) 2 a}

is called @ o - cut set of A.

From now on, otherwise specifically mentioned, all topological spaces are
assumed to be Hausdorff, E denotes a real Hausdorff locally convex space,
and E* its topological dual space equipped with the strong topology. For
a nonempty subset Y of E, cc(Y) denotes the set of all nonempty closed
convex subsets of E contained in Y. Let X be nonempty convex subset of
E. A real valued function f : X — R is said to be quasi-concave, if for every

real number ¢, the set {z € X|f(z) > t} is convex.
The following result is our starting point.

Proposition 1. (Himmelberg [5,Theorem 2]) Let X be a nonempty
convex subset of a Hausdorff locally convex space E. Let F: X — cc(X) be

a compact u.s.c. multifunction. Then F has a fixed point.

Using this proposition, we can prove Proposition 2 and 3 in the following

Section 3.
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3. Main Result

We begin with a non-compact version of Simon’s result [12, Theorem
2.5].

Theorem 1. Let n be a positive integer and, for each i € Zy, let X; be a
nonempty convex subset of a locally convex space E; and T; : X; — cc(Xiyt 1)
a compact u.s.c. multifunction. Then there exists (zo, 1, " ,Zn—1) € Xo X
.+ x Xp_ such that for all ¢ € Z,,, z;+1 € T;z;. Here Z, = {0,1,---,n — 1}
stands for the additive group modulo n.

Proof. In case when n = 1 Theorem 1 is essentially Proposition 1. We
assume that n > 2. Let X = Xg X -+ X Xp_1,E = Eg X --- x E,_; and
define T : X — 2% by

T(-TOv-Th t 'xn—l) = Tn—lxn—l X TOzO X X Tn—2$n—2

for (zo,z1, " ,Tn-1) € X. Then T is a compact u.s.c. multifunction
with nonempty compact convex values. Indeed, each T; is u.s.c. and com-
pact convex valued. Hence the product map T is us.c. and compact
convex valued by virtue of Lassonde [10,Proposition 1 (5)]. It remains to
show that T is compact. But this is also immediate because T; is com-
pact. By Proposition 1, T has a fixed point (Zo,Z1,--*,Zn—1) € X, le.
(20,1, +Zn—1) € T(z0,21, ", Tn-1). This gives the required result.
This type of (2o, -, Tn-1) is called a & cyclical coincidence point in Si-
mons [12]. Now we are ready to give our first main result about the existence

of cyclical coincidences for fuzzy mappings.

Theorem 2. Let X; and E; be as in Theorem 1. Let K; be a nonempty
compact subset of X; and T* : X; — F(Ki41) a closed convex fuzzy mapping
for i € Z,. Suppose that for each i, there exists a l.s.c. function a; : X; —
(0.1] such that for any = € X; the cut set (T})a,z) = {¥ € Kin|(TH(y) 2
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a;(z)} is a nonempty subset of K;y;. Then there exists (zo, 21, +,Zn_1) €

Xo X -+ X X—1 such that T;",(a:,q,l) > ai(z;) for all 1 € Z,.
Proof. Define T\,- : X; — 2K+ by ﬁ(w) = (Tzi)ai(z) for all z € X;.

Claim 1. T; is closed convex-valued, hence compact convex-valued.

In fact, for any y,z € (T%)q,(s) and any t € [0.1] we have

Ti(ty + (1 — t)2) 2 min{(T{)(y), (T3)(2)} > ai(<).

This implies that ty + (1 — t)z € (T;)a;(z)’ that is, (Tj)ai(z) is convex.
Next let {y;};cs be a net of (T})a,(z) convergent to yo € K;1;1. Obviously,
(z,y;) = (z,90)-

As T' is closed, we have

(T3 (yo) > limjsup(Ti)(yj) > ay(z).

This show that yo € (Té)a;(z), ie. fﬁ(w) is closed.

Claim 2. f’, is u.s.cC..

It suffices to show that the set
graph(T}) = Urex, {(z,y)lu € Ti(2)}

is closed in X; x K41 by means of Lassonde [10,Proposition 1 (2)]. Let
(zj,Y;j)jes be a net of graph(f’,-) and (zj,y;) — (20,y0) in Xi X K;4;. Since

T" is a closed fuzzy mapping, we have

(T;o)(yo) > limsup(Tjj Wy;) > lim§11pai($j) > limjinfa,-(:rj) > ai(zy).
j j

Hence yo € Ti(z0), i.e. (20,Y0) € graph(T}), as desired.
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It is obvious that ’.ﬁ is compact because T,'(X,') C K;4+1. Applying
Theorem 1, we conclude that there exits (zo, 1, ,Tn—1) € Xo X - xXp1
such that r;41 € ﬁ(l‘,‘), i.e. T_i'.(:t,’_*.l > ai(z;) for all: € Z,. This completes
the proof.

In case when n = 1, Theorem 2 reduces to the following.

Corollary 1. Let X be a nonempty convex subset of a locally convex
space E. Let K be a nonempty compact subset of X and T : X — F(K)
a closed convex fuzzy mapping. Suppose that there exists a Ls.c. function

a: X — (0,1] such that for any z¢ € X such that Tzo(z0) 2 a(zo).

Remark. If X is compact and K = X, Corollary 1 is due to Chang
[2, Theorem 5 (i)]. So Corollary 1 is a generalization of Chang’s result to
non-compact case. Also Corollary 1is a fuzzy version of Himmelberg’s fixed
point theorem [Proposition 1]. When n = 2, Theorem 2 is an interesting

result.

Our second result is concerned with the existence of equilibrium points
in generalized games. A generalized game is a game in which the choices of
players cannot be made independently: each player must select a strategy
in a subset determined by the strategies chosen by the other players. For
the sake of completeness, we introduce the following which is induced by

Proposition 1.

Proposition 2. (Kum [8, Theorem 6.2.2], Kim [7, Theorem 2]) Let
{X;}ier be an indexed family of nonempty convex subsets each in a locally
convex space E; and {K;}ier a correspondingly index family of nonempty

compact subsets of X;’s. For each i € I, let f; : X = [Tic;X: —» Rbea
continuous function and T; : X* = Hjerjzi Xi = cc(K;) be a continuous

multifunction such that f;(z*,-) is quasiconcave for all 2! € X*. Then there
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exists a point u € X such that u; € T;(u?), fi(u) = maXyer;(ui) fi(u',y) for
all: € I.

Theorem 3. Let X;, K; and f; be as in Proposition 2. Let 7% : X! —
F(K;) be a closed convex fuzzy mapping for all i € I. Suppose that for each
%, there exists a Ls.c. function &; : X* — (0, 1] such that for any z' € X*,
the cut set (T%)a;(ziy = {y € Ki|T!.(y) > ai(z')} is nonempty and the
multifunction z* — (T;.-)a(x.') is Ls.c.. Then there exists a point « € X such
that

T (u; > a;(u') and (u) = max (Ut y).
B2 ai) and )= mex | f(u)

Proof. We can prove in the same way as in Theorem 2 that for each
i, the multifunction T : X! — cc(K;) defined by ﬁ(ac’) = (T4it)a(zi) is

compact u.s.c.. Moreover T; is also ls.c. by given conditions, whence T}

continuous. Therefore all conditions in Proposition 2 are satisfied, so there
exists an v € X such that u; € f’i(ui), fi(u) = max, .2 i fi(u',y). This

means that

T, u;) > ai(u') and (u) = max S(uty).
() 2 o) and fitw) = max | fiuty)

This completes the proof.

Now we are going to present our last result on generalized quasi-variational

inequalities for fuzzy mappings. In the first place, we introduce the following.

Proposition 3. (Kum [9., Theorems 3 and 4]) Let X be a nonempty

bounded convex subset of a locally convex space E. Let §: X — cc(X) be
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compact continuous and T : X — cc(E*) compact u.s.c. Then there exist an

zo € Sz and a yo € Tz such that
< Yo, o —x ><0 for all z € Szg.

In particular, if X is a normed linear space, the condition that X is bounded

is superfluous.

Remark. The above Proposition is a generalization of Shih and Tan[11,
Theorem 4] and Kim [6] under non-compact setting. Of course, Proposition

3 is obtained by using Proposition 1.

Theorem 4. Let X, E and E* be as in Proposition 3. Let K and L
be nonempty compact subsets of X and E* respectively. Let S :— F (K)
and T : X — F(L) be closed convex fuzzy mappings. Suppose that there
exist two l.s.c. functions @ : X — (0,1} and 8 : X — (0,1] such that for any
z € X the cut sets (S;)a(s) and (T;)g(z) are nonempty. Assume further that
the multifunction z — (Sz)a(z) is Ls.c. on X. Then there exist an zq € X

and yo € L such that S; (z0) > a(zp), T:o(yo) > B(x0) and

<yo,To —x ><0 forall z with S;,(z)> a(z).

Proof. As we have seen in Theorems 2 and 3, we know that two multi-

functions § : X — ce(K)and T: X — cc(L) defined by
8(2) = (Se)an, (=) = (Ta)seo)

are compact u.s.c.. By hypothesis, S is continuous. Thus all conditions of

Proposition 3 are fulfilled. Hence there exist an z¢ € §x0 and a yy € Tl‘(}
such that

< yo, o —x ><0 for all megxo.
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This(z, yo) is a desired one.

Remark. We would like to point out the difference between Theorem 4
and Chang and Zhu [4, Theorem 1]: (i) in [4], T is assumed to be monotone
together with some kind of lower semicontinuity whereas T is closed convex
without monotonicity in Theorem 4; (ii) the interacting set > in Theorem 1

of [4] is no longer required to be open. But we imposed a stronger continuity

condition on S, i.e. S is l.s.c.;(ii1) the domain X need not be compact in

Theorem 4.
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