AN APPROACH TO ERDOS’ PROBLEM
ON SUBSET-SUM-DISTINCT SEQUENCES

Jaegug Bae

ABSTRACT. We use Tomié’s inequality to show some interesting properties of subset-sum-distinct se-
quences. We reproduce L. Moser’s result by means of an analytic method. Also we suggest a possible
approach towards Erdoe’ conjecture on the lower bound of the n-th el t of a subset-sum-distinct
sequence.

I. Introduction

In this paper, by a sequence we mean a strictly increasing sequence of positive integers. We start

with a definition.

Definition 1.1.
(i) Let A be a set of real numbers. We say that A has the subset-sum-distinct property (briefly
SSD-property) if for any two finite subsets X, Y of A,
Z z= Z Y => X=Y
z€EX yey
Also, we say that A is SSD or A is an SSD-set if it has the SSD-property.
(i) A sequence {a,}32, is called a subset-sum-distinct sequence (or briefly, an SSD-sequence) if it

has the SSD-property.

One of the most interesting and natural SSD-sequences is t = {1,2, 22 23 ... }. Now, for a
given SSD-sequence {a,}3>,, how one can compare the size of this sequence with t? The following

basic lemma, which is a starting point of the next section, gives some insight.
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Lemma 1.2. Let {a,}32, be an SSD-sequence. Then
a+ag+---+a, > 2" -1

for every n>1.

Proof. Let

A={aj,a,- ,e,} and J={Zb:¢7éBcA} :

beB

Note that all the elements of J are positive integers. Since A has the SSD-property,

B,B'CA and B#B = Y b# > ¥
beB YeB’

Hence [|J|=2" — 1. Because a; + a3 + - -- + a,, is the greatest element in J, we have

bal +ay+---+a, > 2"-1.
]
As {1,2, 22,23,: --} suggests, SSD-sequences are quii:e sparce. It seems very natural to ask how
dense they can be. We will consider a question of this flavor in this paper.
As a way of obtaining finite “dense” SSD-sets, one can use the Con;vay-Guy sequence (see
[9],[11]). Here we explain the construction of the Conway-Guy sequence. First, define an auxiliary

sequence u, by
u =0, u =1 and Uny) = 2Up —Up—p, N >1,

where r = (v/2n), the nearest integer to v2n. Now, for a given positive integer 7, we define

The well-known Conway-Guy conjecture is that {a; : 1 < i < n} is SSD for any positive inte-
ger n. This is still open. It is known that it does yield SSD-sets for n < 80 (see [11, p.307,

Theorem4.6}).
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An Approach to Erdos’ Problem on Subset - Sum - Distinct Sequences

Throughout the paper, we assume that {an},2., is an SSD-sequence.

(i) In the next section, we consider the Dirichlet series of an SSD-sequence, namely,

m
E a;*® forreal s.

i=1

(ii) In the third section, we consider a lower bound on a,. Here a result of L. Moser asserts that

iai2 < iz’l(i—l)_
i=1 i=1

We introduce a new approach to this inequality based on Laplace’s method for estimating inte-

grals, and suggest how this method might be further utilized.

2. Tomi§'s Inequality

First of all, we introduce Tomié’s inequality. It will turn out that his result is extremely useful

m

for the estimation of Za,-’ , especially when s is not an integer.

i=1

Theorem 2.1. (M. Tomi¢, 1949) Let
ulZuQZ"’Zum7 1’12”22"'>vm,

where ujs and v}s are real numbers. Then
k

k
Z"‘ < Zvi for k=1,2,-.- ' m
=1

=1

if and only if
m m
Do flw) < Y fw)
i=1 i=1
for every convex increasing function f.

Proof. Sece [12].
roof. See [12] O

Remark. Originally, Tomi¢ gave a geometric proof based on a Gauss’ theorem on the centroid. But

it can be proved easily by using convexity and summation by parts (See [12], [15], and [16]).
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Corollary 2.2. Let 7, <z3<---<z, and y <y2 < -+ < Ym, wherezs and y;s are real
numbers. Then the followings are equivalent.
k k

G Y. m <Y w  for k=1,2---,m

i=1 i=1

m m
(i1) Z g(zi) = z g(y;) for every convex decreasing function g

i=1 i=1

m m
(iii) Z h(x;) < Z h(y;) for every concave increasing function h.
i=1 i=1

Proof. In the above Theorem 2.1, put u; = —y; and v; = —z;.
(i) « (ii)): Take f(x)=g(—z) in Theorem 2.1.

(i) & (iii)): Take f(z) = —h(—z) in Theorem 2.1.

Now we apply the above corollary to SSD-sets.

Definition 2.3.
(i) For any positive integer n, we define
G(S,n) = {1,2,2%,--- .2~} and G(S,0) = G(S).

(ii) Let A be asetand f a real valued function defined on A. Then define

pr(A) = Y fla)

a€A

if the sum of the right side exists.

Theorem 2.4. For any SSD-set A we have

AN

(i) wpe(A) < ng(G(S,|Al)) for every convex decreasing function g,

\%

(i) pn(A) > pn(G(S,|A])) for every concave increasing function h.

Proof. Let A = {a; <az <az<---}. By Lemma 1.2, for all positive integers k < |A] we have

(2.1) a tag+-dag > 1424224 428
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Now, in Corollary 2.2, put z; = 2*~! and y; = a;. A direct application of the corollary with a

limit argument when |A| = oo gives the result O

The following theorem, which was first proved by F. Hanson, J. M. Steele and F. Stenger (see

[10]) using a variation of Ryavec’s generating function method, is immediate from Theorem 2.4.

Theorem 2.5. Let {a,}o.., bean SSD-sequence. Then

m m . 1 —9gms
2.2 Yoat <y 26N S
(2.2) i=la: = 1=9%

i=1

for all positive integers m and all real numbers s <0.

Proof. In Theorem 2.4 (i), put A = {a;,a2,---,a,} and g(z)=z°. -

At this point, one may ask whether one can have the reverse inequality of (2.2) for non-negative

s. In other words, is

g UL 1 — gms
. IS (i-1)s _ — —
(2.3) .Z:;a, >y2 T

=1
for all positive integers m and all s>07?
In view of (2.1), inequality (2.3) is true for s = 1. What about other positive values of 87 In

connection with this question we have the following theorem.

Theorem 2.6. Let {a,}or, be an SSD-sequence and (3 a fixed positive real number. If

m 1— 2"1‘,

=1

for all positive integers m., then (2.3) is true for all positive integers m, and all 0 <8< 3.

Proof. In Theorem 2.4 (ii), put A = {aj,ay,--- ,a,,} and h(x) = x°/?. Note that h(r) is

concave and increasing on x > (), whence the result follows.

O
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By the previous theorem, we may define A to be the supremum of all s that satisfy (2.3) for
all SSD-sequences {a,}32., and for all positive integers m. Leo Moser proved that (2.3) is true
for s =2 by a clever combinatorial argument (see [4, p.137] or [9, p.142, Theorem 2]). We will

give an alternate analytic treatment of it in the next section. Thus we have A > 2. Let
(2.4) {a;}_, = {20,31,37,40,42,43, 44} .

By routine calculations or by using the construction from the Conway-Guy sequence (see [9], [11]),

one can show the set of (2.4) has the SSD-property. Then

7 7
Z a;® — Z 2(5— 1)s
=1

i=1
changes sign from + to — at s =3.6906742--- . (Of course it is obvious from Theorem 2.6 that it

cannot change sign in the opposite direction.) Hence we may conclude that 2 < X < 3.6906742- - - .

Remark. Note that the method used by F. Hanson, J. M. Steele and F. Stenger in [10} has no

immediate extension to s > 0 because of convergence problems.
We close this section with a multiplicative analogue of inequality (2.1).

Theorem 2.7. Let {a,},., bean SSD-sequence. Then
aag---a, > 1-2. 22 coogmel 2711(111—1)/2

for all positive integers m.

Proof. In Theorem 2.4 (ii), put A = {ay,ay, -+ ,a,,} and h(z) =logz.

3. A lower bound for a,

Let a = {an}, | be an SSD-sequence. It is an old problem to find a lower bound for a,, (see

(1, pp.47-48], (2], [4], [5, p.467], [6, pp.59-60], [9] and [14]). This problem can be stated inversely:
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Under the condition a, < z, find an upper bound on n. In his paper (3], N. Elkies mentioned the
inter-relation between a lower bound on a, and an upper bound on n in terms of z. A lower

bound of the form
(3.1) an 2 Cn™°2%(1+0(1))
corresponds to an upper bound of the form
1
(3.2) n < logy x + slog, log, = + log, Vol + o(1).

The famous conjecture of Erdés is that (3.1) and (32) hold with s = 0 (see [8, p.64, problem C8}).

In connection with the previous section, note that this conjecture of Erdés is equivalent to

(33) Za.‘ > ¢ ;w-m cr =2

for all positive integers m, for all positive s, and for some positive constant C'. On the one
hand an, > C2™"! forall m clearly implies (3.3). In the other direction, (3.3) implies man,* >
co2m-s o g > m=(1/9) g gm=1 ; since 8 can be as large as desired, a,, > C2™"! for all

m. Also, Elkies showed that

_,,2n 1_*,‘
""22()~ﬁ" 2

n
by an analytic method. But we point out that from L. Moser’s result we can derive the better

bound, a, > i11"42" for n > 2, very easily:

V3
(%) 3 i 6 Ly

i=1

= na,? > %4" = a, > L7»_"*2".

V3
In Theorem 3.3 below we give a new proof of Moser’s result (*) using an analytic method. Though

Moser’s proof is simple enough, we give another because it might give some further insight.

First, we need the following two lemmas. The first one is quite simple; the second is known as

Laplace’s method for estimating integrals.
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Lemma 3.1. Let 0 < a < b be fixed. Then for any y > 0, we have
Py <y Y
Proof. Note that

0<y<l = y"-3*<0 and y*y®-1<0,

y>21 = 3*-3">0 and 3™’ -120.

Hence, for any y >0, (3° —3°)(y*y®—1) >0. This implies that y°y? +3* > y**y’ +3° and

the result follows upon dividing by y°t®. a

Lemma 3.2. (Laplace’s method) Assume that two real valued functious p(x) and f(z), de-
fined on (—o00,00), satisfy the following four conditions:
1) o(z) (f(a:))N is absoluteiy integrable on (—o0,00), N =0,1,2,---.

(i) f(z) > 0 forall ¢ and f(z) attains its maximum at z =¢. Furthermore

sup{f(z) : z€C} < f(§)

for any closed subset C of (—o0,00) not containing §.
(iii) f"(x) exists and is continuous on (—o0o,00) and f(€) < 0.

(iv) @(x) is continuous at = =¢€, and p(§) #0.

°° Ney [ 2T
[ o@ g dr ~ p0 GO\ -7

Proof. See [13, Vol. I, Part II, Problem 201).

Then

as N — o0.
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Theorem 3.3.
> al? > l(4"—1)
£ 3
i=1

Proof. Let

A={Z€jaj :€5=+1 or —1}

=1

Clearly every element in A has the same parity and a € A implies —a € A. Since {a;}2, is
an SSD-sequence, we also have 0 ¢ A. Note that no integers can be expressed in more than one

n”
way in the form Ze,-a,- , where ¢; ==x1. For
j=1

is equivalent to

Hence |A| =2". Now, by Lemma 3.1, we have

27!-—1

Zya > Z (ij—l+y—(2j—-1))
acA J=1

forall y>0. Let y=¢€*. Then

n

H (ea,-.r +c—ﬂj4t) - ch.t
j=1

a€A
n=1 . h(2n )
> ry\23—-1 ry—(2j-1) - Sin. T
a Jg; ((e : +e) ) sinhz

Divide by 2", take reciprocals, and and raise both sides to the power 2m to obtain

n 1 2m inh 2m
l—I < g ( _sinhz
pobe cosh (a; r) sinh (2™ )
Then integration from —oo to oo vields

o n 1 2m o inh 2m
sinhx
34 N _ lr < 4™ —— ..
(34) /Lw(H cosh (a,T)) de < 4 ,/_o‘,(sinh(?“m)) dz

i=1
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To estimate the integral on the right side of (3.4), apply Lemma 3.2 with N =2m, £ =0,

sinhz

p(z) =1 and f(z) = W

Then, since f(0) = 2™ and f”(0) = (2™ -2"),

2m -
et sinhx —ny2m+} 3-2m
/_w (sinh @r m)) o ~ (277) \/ 2m (27 — 2-7)

as m — oo. Thus

2m - ——
Sad sinh z 3
mn dr ~ -n —_—
(35) 4 /_,,o (sinh @2n :v)) 2 m (1 —2-2n)

as m — co. Now, in order to estimate the integral on the left side of (3.4), apply Lemma 3.2

with N =2m, £=0,

p(z) =1 and f(z) = Hm

=1

Note that here f(0) =1 and f”(0) = ~3 7, a;®. Hence

2m
oo [ n 1 ™
(3.6) [ w(}jm) & | \/:;

as m — oo.
From (3.4), (3.5) and (3.6) it follows that
n
> a? > %(4" —-1).
i=1 O
Finally, we sketch how this method might be used to obtain more detailed information on the
a,. The (admittmﬂy still rough) idea is first to obtain detailed information on all power sums

Z;zl a;2* . To do this, introduce the generating function

n
(cwan.r +cu2n_,v.r 4. +cug,,aj.r)
1

Jj=

where w), wy, ---, wy are all the 2k-th roots of unity, and use the following generalized Laplace

method:
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Theorem 3.4. (Generalized Laplace Method) Assume that a real valued function f(z) defined
on (—oo,00) satisfies the following:
() (f=P" is integrable on (~o00,0), N =0,1,2,---.

(ii) f(x) >0 forall + and f(z) attains its maximunn at = =¢. Furthermore

sup{f(z) : € C} < f(&)

for any closed subset C of (—o0,00) not containing &.
(iiiy f™)(z) exists and is continuous on (—o0,00).
(iv) fD(&) =0 for 1<2m and f™(£)<0.

Then

—N f@m)(¢)

* 1/(2m)
[~ U@ de ~ ()" P(l/,(fm))( (2m)! )

as N — oo.

Proof. Imitate the proof of the Lemma 3.2 and use the fact (see (7, p.355, #3.326])

€
—o00 m

Ot

Then take

- 2k
]'—Hl (eulajx + ew28;® 44 cuun_,_,,) -

flz) =

We have f(0)=1, fO0)=0 for I <2k and

n

F0) = =3 %
J=1
Upon applying Theorem 3.4, it follows that

= N ra/ee) (e}
./_oo Jo)dr ~ k (N Z;.':laj’lk)

as N — oo.
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Of course, to make this approach successful, one needs to find an appropriate upper bound for

the function f(z).
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