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1. Introduction

Swine wastes may cause a serious degradation of water quality such as eutrophication
and spread of pathogens in water bodies (ie., lakes, rivers and groundwater as water
supply sources)[1]. The daily volume of livestock wastewater in Korea reached
197,000m3, and 50% of the volume was generated from dairy farms that were not target
for a legal pollution control. The amount of wastewater is relatively small compared
with total wastewater including industrial and domestic wastewater (7% of the total),
but contributes significantly to the pollution of the receiving waters because of its high
organic nutrient concentration (>BOD 20,000 mg/L) [2]. While an activated sludge
system'has been proven to be effective in the treatment of piggery slurry at large scale
farms (more than 1,000 heads), the system may not ensure the effect in small or middle
scale farms (les_s than 1,000 heads) in terms of ifs operation cost.

Recently a recycling reactor system operated under sequential oxic and anoxic
conditions for the swine wastewater has been developed, in which piggery slurry is
fermentatively and aerobically treated and then the partial effluent recycled to the pigsty
{3]. This system appears to significantly remove offensive smells (at both pigsty and
treatment plant) and BOD, and turns out to be cost effective for relatively small-scale
farms.

One of the best known models applied ‘for wastewater treatment system so far is the
activated sludge model NO. 1(ASM 1) introduced by International Association for Water
Quality (IAWQ) [4]. Application of the model to field treatment system, however, may
have some limitations because there are many operational parameters and has quite
variable kinetic characteristics within the treatment system over time [5].

On the other hand, neural network models that imitate the functions of our. human
brain have been successfully used to resolve many engineering problems such as
complex pattem classification and control of highly nonlinear dynamic systems [(6-9].
Those models have the characteristics of massive parallelism, many degrees of freedom,
and adaptive learning. It was recently well known that the multi-layer neural networks
can approximate a function in L? within an arbitrary accuracy [10], and can generalize a
new data set that was not used in the learning process [11]. Recently a progress has
been made in application of neural networks to control biclogical and chemical
engineering processes. There has been, however, no report dealing with a neural
network modeling for biclogical swine wastewater treatment system.

This study was carried out to elucidate mechanism of the recycling piggery slurry
treatment system using such as variables population dynamics, activity of heterotrophic
bacteria, and treatment effects based upon suspended solids (SS), total nitrogen (T-N),
ammonia nitrogen (NH.'-N), total phosphorus (T-P), ortho-phosphorus (o-P) and
chemical oxygen demand (COD) as input or output variables. These variables were used
to establish a non-linear model emulator using multi-level neural networks that could
eventually allow real time monitoring and prediction of the treatment system. We also
tried to elucidate a mechanism for ammonium removal using molecular biological
techniques.
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2. Materials and methods

2.1. System Overview

A scheme for the recycling treatment system at a bench scale is shown in Fig. 1.
Detail description of the reactor operation has been shown in the previous report [12].
Piggery slurry and treated effluent used as washing water were collected in tank 1, and
this influent then flows into the fermentation tank (tank 2; 15L). There is a channel
between tank 2 and an aeration tank (tank 3; 15L) so that the fermented wastewater
can be transported into tank 3 where oxidative treatment occurs under aeration condition
(7.8v/v/m). The -treated water then goes through sedimentation process in tanks 6 and 7,
and finally is stored in tank 8. A portion of the effluent was recycled and used to wash
the pigsty.

= [L|

o |
(10 [ 6 [

Fig. 1. Schematic diagram of the recycling treatment system for piggery slurry. 1 Influent tank; 2
Fermentation tank; 3 Aeration tank; 4 Blower; 5 antifoaming device; 6 Sedimentation tank (A, B, C

and D); 7 Reservoir; 8 Storage tank; 9 Recycling flow; 10 for land application as a fertilizer.

The wastewater used in this study was sampled from a mixing and storage tank at
Kimhae Piggery Slurry Treatment Plant (Kimhae, Kyungnam, Korea) and had a COD
(ca. 4000 mg/L), BOD (ca. 7000 mg/L), T-N (ca. 2100 mg/L), and T-P (ca. 172 mg/L).
The influent consisted of piggery slurry (33% v/v), effluent (57%) and tap water (10%)
and was supplied every 4 days. Glucose was added to the formulated influent to make a
C/N ratio of 100:15 [13] and a microbial agent (YC2000, Yoonchang Agricultural
Management, Inc., Cheju) was also added up to 1 %(w/v). The hydraulic retention time
of the system was 4 days and was operated for 47 days.

2.2. Isolation, Identification and Quantification of Microorganisms

Heterotrophic bacteria potentially involved in the piggery slurry treatment within the
system were isolated using the appropriate media [14]. To isolate and grow lactic acid
bacteria (LAB), MRS medium was used. LAB were grown at least 2 weeks before
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identification and counting were performed. Other heterotrophs were grown on TSA
(Trypticase Soy Agar, Difco) for at least 1 week, and then identified and counted.

The bacterial communities in the system were analyzed based on their isolation,
identification and determining the colony forming unit number (population density) of
dominant populations in each medium. Identification of the bacteria was performed based
on cultural, physiological and biochemical characteristic described by Smibert et al. [15]
and Holt et al. [16]. Utilizations of sugar, amino acids and organic acids by
Gram-negative bacteria were tested using an API Kit (bio Merieux sa, France)
according to the manufactures protocol.

2.3. Analysis of Piggery Slurry Samples from the Treatment System

Monitoring parameters, such as SS, T-N, NHi-N, T-P, o-P and COD, were
measured for piggery slurry samples taken daily following Standard Methods for the
Examination of Water and Wastewater [17]: COD by closed reflux, titrimetric method,
T-P and ortho-P by ascorbic acid method, suspended solids by total suspended solids
cride method, and NH;'-N by indol phenol method.

2.4. Modeling of the Treatment System Using Neural Networks

For an optimal treatment of piggery slurry, it is important to understand the
physiological characteristics of microorganisms and their relationships, but may be
difficult to identify the relationship by a linear analytical method. The relationship
between population densities of the microorganisms and the treatment efficiency shows a
nonlinear dynamic characteristicc. We used a multi-layer neural network with an error
back propagation algorithm to model the complex relationship in the recycling system.
Since the multi-layer neural network is able to approximate an arbitrary nonlinear
function with sufficient input and output data, the modeling of the recycling piggery
slurry treatment system can be accomplished using the neural network for complex
dynamic systems. For modeling of the recycling system, we considered cause and effect
relation in each tank. As independent parameters in each tank, the population densities
of heterotrophic microorganisms MRS-1, TSA-1, TSA-2, and TSA-3 were considered
because those could dominantly affect the piggery shury treatment efficiency. Also,
COD, total-P, ortho-P, SS and NHs'-N were considered as treatment parameters in each
tank. Thus, we designed a multi-layer neural network in which the input nodes
consisted of 4 independent parameters in the current tank and 5 treatment results in
previous tank, and the output nodes generated the 5 treatment results in the current
tank.

To model the recycling system, there are two ways to use the neural network. One is
to use a single neural network for modeling the characteristic of all the tanks in the
recycling system. The other is to use the neural network to model the characteristic of
each tank, and then serial connection of each neural network that modeled each tank
could allow a monitoring of the recycling system. In this study, it was difficult to model
the overall characteristic of all tanks by a single neural network because each tank in
the treatment system has different role and characteristic. Thus, we used each neural
network that modeled the characteristic of each tank, and the overall model of the whole
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treatment system was obtained by the connection of each neural network. Fig. 2 showed
a proposed modeling protocol for the recycling system. We used principal component
analysis (PCA) as a preprocessor of the neural network. Input of the neural network
was reduced to 3 principal values from 9 independent variables. The output values of
the neural network were COD, total~P (T-P), 0-P, SS and NH:'-N in the current tank.

To accomplish a successful modeling, the connectivity within neural networks in the
current tank were adjusted to best predict the measured values to be obtained at the
next treatment step using SS, NHs'-N, T-P, 0-P and COD as input variables.

MRS-1

TSA-1

TSA-2 . COD

T-P
TSA-3
1 Network SS

T-P D3 -
0P NH,*-N
SS

NH,*-N

Fig. 2. A schematic diagram describing training strategy for the neural network in this study.
MRS-1, TSA-1, TSA-2 and TSA-3 denote the population density of the bacterial strains. COD
{chemical oxygen demand), T-P (total phosphorus), o-P (ortho-phosphorus), SS (suspended solids)
and NH4 -N are parameters for the wastewater treatment. PCA, D1, D2 and D3 denote principal

component analysis and dimensions obtained after the analysis, respectively.

2.5. Ammonium Uptake and Utilization Test

Ability of the isolated heterotrophs to uptake ammonium (NH.') was measured to
understand an ammonium removal mechanism in the treatment system. The dominant
organisms (TSA-1, TSA-2 and TSA-3) were grown in the mineral salts medium [18]
containing glucose (0.4% w/v or 3.2% w/v) as a sole carbon source. Unless the
organisms were grown on the medium, they were to grown on citrate mineral salts
medium ([19]. Nitrogen source for these media was (NH4):S0s The inoculated media
were incubated at 26C and under rotary shaking (190rpm), and the growth was
measured spectrophotometrically (525nm). The ammonium concentrations before
inoculation and at stationary phase were measured and the ammonium removal efficiency
was calculated.

2.6. Extraction of total DNA

Cells used for the ammonium removal test were collected by centrifugation and
subjected to total DNA extraction that was performed according to Maniatis et al. [20].
The centrifuged cells were washed once with phosphate buffer and then resuspended in
0.6 ml of lysing buffer (0.15M NaCl, 0.1M EDTA, and 15 mg of lysozyme per ml). After
incubation at 37TCfor 3 hr, 0.06 ml of 10% sodium dodecyl sulfate was added and the

-215-



Joumal of the Research Institute of Industrial Technology, Vol. 18, 2001

mixture was incubated at 65C for 10 min, and then -70°C for 5 min. The freeze and
thawing procedures were repeated twice. The mixture was then extracted with
phenol-chloroform three times and with chloroform once. The alcohol precipitated DNA
was resuspended in TE buffer containing RNase A and incubated at 37C for 3 hr to
remove residual RNA.

2.7. PCR Amplification of Glutamine synthetase Gene and Southern Blot
Hybridization

Degenerate oligonucleotide primers (forward primer GS-L and reverse primer GS-R)
targeting glutamine synthetase genes from the isolated organisms were designed from
the conserved GS protein sequences of Bacillus sp. including Bacillus subtilis 168
(KCTC 1326; ATCC 33234 Spizizen strain 168). The protein sequence alignment and
analysis were accomplished using the sequence databases of Gene Bank and the Blast
sequence analysis protocol available at National Center for Biotechnology Information
(National Institute of Health). Their sequences were 5-GTG-AAG-TAT-ATC-CGY
-CTT-C-3" (GS-L) and 5- ATA-YTG-WTC-GCG-YTC-CCA-3" (GS-R), which were
custom-synthesized by GenoTech (Taejon, Korea). One to 3.3 ng of the extracted total
DNA were used as a template. Positive control DNA was from Bacillus subtilis 168,
The PCR procedures for this study were modified based upon the previous report [21]
Each PCR reaction mixture (20 pf) contained the following reagents: 10 X Tag buffer,
MgCi2 (1.5 mM), dNTPs (250 #M, each), forward primer GS-L (10 pM), reverse primer
GS-R (10 pM), Tag polymerase (1.25 U) (Promega). PCR was performed in a DNA
thermocycler (Perkin Elmer model; GeneAmp PCR System 2400). The PCR conditions
were denaturation (94°C, 5min), 30 cycles of the standard PCR (94°C 1 min; 50C 1 min;
72T 1 min), and a final chase reaction of (72°C S5min).

The expected PCR product (1269 bp) from GS gene of Bacillus subtilis 168 was
identified and nonradioactively labeled using Nonradioactive Labeling and Hybridization
Kit (Boehringer Mannheim, Germany). All the following Southern hybridization
procedures were done according to the previous report [18] except using CSPD
(Disodium  3-(4-methoxyspiro{1,2-dioxetane-3,2- (5-chloro)tricyclo[3.3.1.13,7)decan}-4-y1)
phenylphosphate) (Boehringer Mannheim) as a chemiluminescent substrate for the
alkaline phosphatase.

3. Results and Discussion

3.1. Microbial Identification, and Analyses of the Population Dynamics and
Piggery Slurry Treatment

The most dominant heterotrophic bacteria in the treatment system were 4 aerobic
bacteria and 3. lactic acid bacteria (LAB). The identified organisms were TSA-]
(Brevundimonas diminuta), TSA-2 (Abiotrophia defectiva), TSA-3 (Alcaligenés faecalis)
and MRS-3 (Streptococcus sp). .

One of the most dominant aerobes was Alcaligenes faecalis TSA-3. The most
dominant species of LAB was strain MRS-1. Population dynamics of the representative
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aerobic bacterium Alcaligenes faecalis TSA-3 during the 47-day running period was
shown for each tank (Fig. 3). Interestingly, TSA-3 was a predominant species among
aerobes in the aeration tank (10'~10® (c.f.u/ml)) but was also observed in the influent
and fermentation tanks (Fig. 3). Thus the strain appeared to survive and grow under
low oxygen tension and anoxic condition. A reported species of Alcaligenes faecalis
could oxidize ammonia under aerobic condition and denitrify nitrate ions via NO and
NoO gases under anoxic conditions [22, 23] Alcaligenes faecalis was found to
accumulate NO: during exponential growth [19]. Population of the strain MRS-1 was
more dominant in the influent and fermentation tanks than aeration and sedimentation
tanks, indicating its facultative anaerobic characteristics. The overall population density
was in the range of 10°~10" (c.fu/ml).

9

Log (c.f.u./ml)
<D
O
170
]
R

0 10 20 30 40 50
Days
Fig. 3. Population dynamics of a heterotrophic bacterium (Alcaligenes faecalis TSA-3) in the

recycling treatment system (®- Influent tank; O- Fermentation tank; v- Aeration tank; v-
Sedimentation tank A; M- Sedimentation tank D)

The ammonium removal efficiency reached 41% as a maximum. The reason for this
rather low efficiency was not clear but unbalanced (presumably, lower) C/N ratio would
be one of the causes. Here, however, offensive smells significantly reduced in the
effluent. .

The overall COD treatment efficiency was about 54%. The COD removal may be
mostly accomplished by biological oxidation or absorption (or uptake) of organic
compounds derived from livestock feeds that carried abundant carbonaceous, nitrogenous
and phosphorus materials, since livestock wastewater contains generally little recalcitrant
compounds.

The ortho or total phosphorus removal effect was also obvious in the aeration and
sedimentation tanks (at least 40%). The possible mechanism for the phosphorus, removal
would be an uptake of phosphorus by cells under aerobic condition and a subsequent
sedimentation of the cells. Surplus phosphorus to be uptaken may be transformed to
poly-phosphorus as a storage material within the cells [24]. A discharge of phosphorus
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is known to occur under anaerobic conditions [25, 26].

In this study the best removal effect of suspended solids (SS) (63%) was first
observed in the aeration tank. This seemed to be due to a transport hole between
fermentation and aeration tanks, which screened out most of the sedimented solids.

3.2. Principal Component Analysis of Input Data

The input and output dimensions of the neural networks in this study were 9 and 5,
respectively. Training data measured for 47 days, was not enough to figure out the
complex correlation between the input and output in each tank, and also it was rather
hard to expect a generalization. Moreover, there were some noises in the data due to a
measuring error or unstable bioprocess. In order to reduce the input and output
dimensions, and remove the noisy data, we first used the principal component analysis
(PCA) method to analyze the training data. PCA projects high dimensional data onto
low dimensional coordinates that consist of principal component axes.

In this study, we used three axes as orthogonal coordinates. These axes were
obtained by PCA, removing the data with one-to-many mapping that gives different
output from the same inputs. A similar data have been reported previously by Choi et
al. [27].

3.3. Modeling of Treatment System by Neural Networks

Among 47 training data, we reversed the 6th, 11th, 16th, 21st, 26th, 31st, 36th, 41st,
46th, and 47th data sets for the training phase, which were randomly selected and used
as test data to evaluate the generalization. performance of the neural network. The
neural network has one hidden layer with 30 nodes that were determined by an ad hoc
method and nonlinear function of each layer except that input layer has a sigmoid. The
weight values were adjusted by error back-propagation algorithm.

Through computational experiment we could assure that the learned neural network
successfully imitated each tank of treatment system and approximated the target values
of the input pattern well. Fig. 4 showed the graphic estimations of COD, NH4 -N, o-P
and SS values based upon the neural network analysis. The X-axis represented the
tanks from 46th days influent tank to 47th days sedimentation tank 2. As shown in Fig.
4, the proposed neural network -could successfully monitor the treatment results
according to the population densities of microorganisms. A dramatic increase of the
measured SS in the influent at 47th day (Fig. 4 D) was an outlier due to a sampling
error.
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Fig 4. Prediction of various treatment parameters COD (A), NHy'-N (B), ortho-P (C) and
SS (D) by the neural network modeling. The serial numbers in X-axis indicate samples
taken from tanks of influent, fermentation, aeration, sedimentation-1 and sedimentation-4 at

46 and 47 day’s running in order, respectively.

3.4. Molecular Analysis of Ammonium Removal

The isolated heterotrophs TSA-1 (Brevundimonas diminuta), TSA-3 (Alcaligenes
faecalis), TSA-4 (not identified) were tested for their ammonium uptake in flask
cultures. These three strains could utilize (NH4)2SOs as a sole nitrogen source for their
growth. Ammonium appeared to be almost utilized since little ammonium was detected
at the stationary phase. Phosphorus removal efficiency was observed up to 60%. NH;'-N
and ortho-phosphorus utilization rates appeared to be species or strain specific. This
indicates a direct utilization of NHs' by a heterotroph and hence removal of nitrogen
from the system by circumventing nitrification process that is energy and oxygen
consuming pathway. It, therefore, appeared that the ammonium uptake and utilization
could contribute to the nitrogen removal in the treatment system (particularly aeration
tank).

Amplifications of GS gene with the GS-L and GS-R primers from the isolated
heterotrophic bacteria were performed. The GS gene product amplified from Bacillus
subtilis 168 could hybridize with one of the PCR products from the isolated bacteria
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(Fig. 5). Therefore, the presence of ability of ammonium utilization and GS gene in the
heterotrophs isolated from the treatment system indicates the possibility that ammonium
removal in the system occurs via GS system of these organisms being involved in

amino acid synthesis.

Fig. 5. Amplification of glutamine synthetase (GS) gene with the GS-L and GS-R primers from the
total DNA of heterotrophic bacteria (A) and Southern hybridization with the PCR products using the
putative GS gene fragment (1269 bp indicated by arrow heads) of Bacillus subtilis 168 (B) as a DNA
probe. Hybridization and washing were done under a stringent condition (65T) . D: DNA 1kb ladder;
1 Bacillus subtilis 168; 2 Alcaligenes faecalis 'TSA-3; 3 Brevundimonas diminuta TSA-1; 4 TSA-4

In this paper, we have proposed a novel monitoring system of piggery slurry recycling
treatment system. Multi-layer neural networks combined with PCA successfully modeled
the tank characteristics. It was possible to train the neural network with the given data
by reducing the input dimension with minimal loss of information and removing the
noisy data with one-to-many mapping property. The proposed model may be useful to
develop a reverse neural network model that could be used to determine optimal
microbial densities critical for a desired quality level of the treated wastewater.

The long-term goal of this study will be to construct a real time monitoring system
of the recycling treatment for piggery slurry using a multi-layer neural network with an
error back propagation learning algorithm. The multi-laver neural network will
contribute to modeling a complex relationship between the various population densities of
microorganisms and treatment efficiency of the recycling treatment system for piggery
slurry and possibly other livestock wastewater.
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