Journal of the Industrial Technology Research Institute.
Korea Maritime University. Vol. 14. 1997.

A Group Communication Platform
for Cooperative Works

Jae-Hong Yim

35 4L A% 3% A =HF

d X =B

Abstract

A GCP(Group Communication Platform) is proposed as a group communication protocol for supporting coo-
perative works among multiple users geographically dispersed in networks. Some of the most important requi-
rements for groupware system are to maintain consistency among shared objects processed by group-work
participants and to be implemented as an open system. Considering these, the GCP is designed to provide
multicast service and lock mechanism for maintaining consistency among shared objects, and it is implemented
on the 0SI(Open Systems Interconnection) application layer by extending existing point-to-point ASEs(Appli-
cation Service Elements) and developing new ASE named MSE (Multicast Service Element). In practice, the
GCP is tested as group communication protocol for a oollaborative document manipulation prototype system.

This paper describes overall configuration, services and communication primitives of the GCP for supporting
cooperative works.

Keywords : group communication, GCP(Group Communication Platform), multicast, CSCW(Computer Suppor-
ted Cooperative Work)

1. Introduction

As PCs and workstations spread since 1980’s, they have been used for processing personal tasks more
efficiently and conveniently. As their typical type of applications was for single user, however, the applications,

% Department of Electronics and Communication Engineering, Korea Maritime University.

o

d A =

such as wordprocessor, spread sheet, drawing tool etc., were developed for supporting personal tasks, and it
was not considered that tasks in organizations was processed by coordination of organization’s members'.

The progress of computing powers and data communication techniques exert the important role on increa-
sing interests in computer support of the cooperative work. This trend advanced toward the new field called
groupware or CSCW(Computer Supported Cooperative Work) which is aimed to support more efficient and
convenient group-work among users with a common goal. Furthermore, diverse CSCW applications, such as
conferencing system, collaborative editing system, decision-supporting system, have been proliferated rapidly.
As a part of research related to CSCW, this paper presents a design and implementation of a GCP(Group
Communication Platform) for supporting cooperative works.

With the ultimate goal of providing support for cooperative works over communication network, the follo-
wing design objectives were established for the GCP.

* The GCP should be independent of application and the type of data transported.

+ It should provide services for maintaining consistency among shared objects processed by group-work

participants.

* It should support the one-to-many, many-to-one, many-to-many forms of multicast transmission.

* It should be desinged as an open system in order to achieve interoperability with various applications,
therefore it should be implemented on the basis of international(ISO/ITU-T) standards as soon as pos-
sible.

* It should be so designed as to make use of existing single-user applications with a little modification
as a CSCW application.

Considering the above objectives, the GCP is designed to provide multicast service and lock mechanism
for maintaining consistency among shared objects, and it is implemented on the OSI(Open Systems Intercon-
nection) application layer by extending existing point-to-point ASEs(Application Service Elements) and develo-
ping new ASE named MSE(Multicast Service Element). In practice, the GCP is tested as group communica-
tion protocol for a collaborative document manipulation prototype system. As a whole, this paper describes
overall configuration, functions and service primitives of the GCP.

The major advantages of the GCP are as follows.

* The modification of operating system kernel is not needed because the GCP is implemented on the

OSI application layer.

* Existing single-user applications can be used on the GCP as a CSCW application with a little modifica-
tion. '

The remaining parts of this paper are organized as follows. Section 2 briefly describes a comparison of the

GCP with a selected number of related works. Section 3 describes existing ASEs which form the basis of
the GCP. Section 4 contains a description of a design of the GCP. Section 5 describes an implementation

A Group Communication Platform for Cooperative Works

of the GCP, the GCP applications. The last section 6 concludes this paper.

2. Related Work

Group or multicast communication has received considerable attention’™* ** in distributed application design.

There are two well-known approaches to implement multicast service. One is a centralized approach, in
which a central server multicasts data to all participants, whereas the other is a distributed approach that all
the participants make connections with each other and each of them multicasts data to the others. Concerning
implementation approach for multicast, the centralized approach is easier than the distributed approach, so
most implementations are made through the centralized approach™. In this paper, however, the distributed
approach is selected for flexibility although the increase of the number of connections, since the centralized
approach is ineffective if the machine where the multicast server is executing fails.

In addition to two approaches to implement multicast service, multicast layer to be imlemented is another
issue because it is possible to implement multicast facility in application, transport or network layer. Since
implementation of multicast in transport® or network layer requires system-level modification, this is used for
high-speed communication such as multimedia conferencing. Therefore, in most case multicast is implemented
in application layer**, furthermore ITU-T proceeds to develop international standard for multicast in application
and recommends T. MCS(Multipoint Communication Service)®.

Like the GCP, multicast remote procedure call’ is implemented in application layer through the distributed
approach, but this RPC makes use of unicast repeatedly, whereas the GCP uses MSE service in order to
increase the degree of concurrent processing.

Our GCP does not guarantee ordered delivery in contrast to reliable group communication mechanism’, ho-

wever ordered delivery in the GCP may be used if there is a central server.

3. Background

In an open systems environment, the application layer consists of multiple protocol entities, each of which
known as an ASE. Since a number of functions are common to many applications, the approach adopted by
ISO(International Standards Organization) is to implement such functions as seperate ASEs and then to link
them with selected application-specific ASEs when appropriate support service is required. The combined en-
tity, known as an AE(Application Entity), is linked with the user application process’. Figure 1 shows the
typical examples of ASEs.

4 A ¥

Application
Layer

Presentation
Layer

Figure 1. Examples of ASEs

The DTAMSE(Document Transfer And Manipulation Service Element) provides a common communication
platform useful in telematic services as well as many other applications including multimedia services®. The
DTAMSE has communication features such as document bulk transfer and document manipulation. DTAM
document bulk transfer is used for conveying documents which are ODA(Open Document Architecture)
and/or other types of documents to the remote system, and the document manipulation is used for remote
document manipulation such as deleting, modifying and moving structured parts of the document.

A logical connection between two AEs is known as an association. The ASE that initiates the setting up
and clearing of an association between two application specific ASEs is thus know as the ACSE(Association
Control Service Element)™. After the association is set up, the AE may request an operation which will be
performed by a remote peer AE. The AE receiving the operation responds the operation-result. To facilitate
this type of the operation, the ROSE(Remote Operation Service Element) is defined. It provides a general
framework of request/response facilities over which any application operation can be invoked by one ASE so
as to be performed by the peer".

If the existing ASEs described above are used with no modifications as a group communication protocol
for supporting cooperative work, the following problem will happen. The OSI model provides a point-to-point
communication function, so the interface between two adjacent layers is established in a point-to-point manner.
Consequently, in order to exchange data among group-work participants, as many specific application service
entities as participants must be created, and then point-to-point connections between these and lower service
entities must be established as depicted in Figure 2.

00

A .Group Communication Platform for Cooperative Works

Qasd QIsD GTARD

Application
......... Layer
(§§§E) QCSE Q§§§§)
: 1 4 Presentation
Layer

Figure 2. Problem of point-to-point interface

4. Design of the GCP

4.1 Design issues and requirements
The GCP for supporting the cooperative work should satisfy the following requirements.

(1) Multicast service

For maintaining consistency among shared objects processed by group-work participants, the status of shared
objects modified by a participant should be transferred to all participants. Therefore, the GCP should provide
various multicast transmission services such as one-to-many, many-to-one and many-to-many way. There are
two well-known approaches to implement multicast service. One is a centralized approach, in which a central
server multicasts data to all participants as shown in Figure 3(a), whereas the other is a distributed approach
that all the participants make connections with each other and each of them multicasts data to the others
as shown in Figure 3(b).

In this paper, the distributed approach is selected for flexibility although the increase of the number of
connections, since the centralized approach is ineffective if the machine where the multicast server is execu-
ting fails.

(2) Lock Mechanism

Lock mechanism provides an exclusive access to shared objects. There are also two ways to implement

lock mechanism, a centralized and a distributed method. The former may not provide a valid locking operation

A~

4 A ¥

by an unexpected fault of a server, so the latter is selected.

partlclpant

i
|

multicast
seryer

|
1

(a) Centralized approach (b) Distributed approach
Figure 3. Two approaches for multicast

(3) Use of existing single-user applications
In order to use existing single-user applications with a little modification as a groupware system, the GCP
is designed to provide the applications with an API(Application Program Interface).

4.2 Configuration model

A configuration model for the GCP is depicted in Figure 4, in which the EDTAMSE (Extended DTAMSE)
is an extension of DTAMSE for use as a collaborative document manipulation system " and MSE (Multicast
Service Element) is designed to provide services such as multiple associations managemnt(establishment and
release) and multicast transmission.

MSE is a new ASE supplemented in this paper in order to work out the problem of point-to-point connec-
tions. The service primitives of ACSE and ROSE are used as it is, however their parameters are so modified
a little as to handle group-identifier for communication among group-work participants.

The GCP is located at the OSI application layer, as illustrated in Figure 4.

~A

A Group Communication Platform for Cooperative Works

DTANSE

Application
Layer

&P

Presentation
LPyer

Figure 4. Configuration model for the GCP

4.3 Service primitives and parameters

Table 1 shows service primitives and parameters of EDTAMSE.

Table 1. EDTAMSE service primitives

Service Type Primitives and Parameters
D_InitiateReq(dinfo, minfo, appl ctx, calling ae, called ae)
D_InitiateResp(dinfo, minfo, appl_ctx, responding_ae, result)
DEInfo *dinfo; /% structure which is needed for association

Association between two EDTAM AEs */
Control MEInfo *minfo: /* structure which is composed of group id

and information about participants * /
char *appl ctx; /% application context */
AEInfo *calling_ae, *called_ae, *responding ae;
int result ;

¥ A %

Service Type

Primitives and Parameters

Association
Control

D_TerminateReq(group id, user data)
D_TerminateResp(group id, user data)

char *group id, /* group identifier */
user_data: / user data from higher layer %/

Document
Manipulation

D_DocumentOpenReq(group _id, document _id)
D_DocumentCloseReq(group _id, document _id)
D_LockReq(group id, object)

D_LockResp(group id, object_id, result)

D_ UnlockReq(group _id, object)

D_CreateReq(group id, object, destination, position, content)
D_DeleteReq(group _id, object) .
D_ModifyReq(group id, object, selection, modification, content)

int document id; /% document identifier */
M_Object *object ;/* Manipulation Object structure */
*destination 5 /% parent object of object to be created */

int position; /* entry position among children

of destination object */
char *content ;s /% object content %/
int selection; /% modification selection of attribute

or content */
struct Modif * modification ; /* attribute type and value

to be modified */

(Note) : DEInfo, MEInfo, AEInfo, M_Object structures are described in detail at appendix

Existing DTAMSE, which provides a point-to-point communication, is so extended as to support many-to-
many forms of multicast transmission. For this, group-identifier for group communication is added to the para-
meters of DTAMSE, and MSE service is used instead of ACSE for association establishment among EDTAM
AEs that share document. In this paper, DTAMSE is chosen for a collaborative document manipulation protot-
ype system because it will soon provide a powerful communication platform as ITU-T standard protocol useful
in multimedia services such as AVIS(AudioVisual Interactive Service) and AGCS(AudioGraphics Conferencing

Service) ' 2.

In Table 1, M_Object structure is defined as the structured parts of document(eg, paragraph, figure) to
be manipulated remotely, and can be represented as hierarchical tree structure. According to select mode
of M_Object structure(see appendix), manipulation object is either limited to one node indicated by MO or
can include all nodes in the subtree of the selected node indicated by MO’, as shown in Figure 5.

A Group Communication Platform for Cooperative Works

Figure 5. Manipulation object

Table 2 shows service primitives and parameters of MSE. When establishing or releasing association, multiple
associations control primitives are interfaced and operated with EDTAMSE and ACSE, above and below of
MSE respectively. Multicast primitive related to remote manipulation is designed to operate with ROSE.

Table 2. MSE service primitives

Service Type Primitives and Parameters

M _ AssociateReq(minfo, appl ctx, calling ae, called ae, user data)
DINQ apdu *user data; /% PDU of D_InitiasteReq */

M _ AssociateResp(minfo, appl ctx, responding_ae, user _data)
Multiple DINQ_apdu *user_data; /#* PDU of D_InitiateResp */

Associations M _ReleaseReq(group id, reason, user data)
Control DTEQ apdu *user_data; /* PDU of D_TerminateReq */
int reason; /¥ reason of association release */

M _ ReleaseResp(group id, reason, user data)
DTER_apdu *user_data; /* PDU of D_TerminateResp */

M_SendData(group _id, class, member name, user data)
Data int class; /* Multicast of Unicast */

Multicasting char *member name; /% used only in case of unicast */

struct M SenD *user_data; /% user data from ROSE */

Table 3 illustrates a mapping relationship among ASEs. As shown in this table, the association control of

9 A4 3

EDTAMSE and MSE uses the services of ACSE, and the document manipulation of EDTAMSE uses the
services of ROSE and M_SendData primitive of MSE.

Téble 3. A relationship among ASEs

EDTAMSE ROSE MSE ACSE
D _Initiate M _ Associate A_Associate
D_ Terminate M _Release A_Release
D_Lock RO _Invoke
D_Ulock RO_Result
D_Create - M_SendData
- RO_Error -
D_Delete RO-U Rei
D_Modify - - Reect

Figure 6 shows state transition diagram for the service elements of the GCP. The possible states of the
service elements are shown in circles, and arrows indicate the possible transitions between the states using
request, indication, response and confirm primitives. Upper side of the figure illustrates state transitions in
the case of group-work initiastor. On the other hand, lower side shows state transitions in the case of
group-work responders.

waiting
M_SendData

Any state
except idle

(o)

D_Terminate!
ind

D_Manipulation
response

Figure 6. State transition diagram

A Group Communication Platform for Cooperative Works

5. Implementation and Applications of the GCP
5.1 Environment and system configuration

A collaborative document editing environment is composed of three SUN SPARCstations connected through
10Mbps Ethernet, as shown in Figure 7. In this figure, the GCP locates directly above TCP/IP without prese-
ntation and session layer to minimize communication overhead, and EDTAM service is used for a collaborative
document manipulation prototype system. EDTAM daemon process is a server process in listening mode wai-

ting a request for association establishment from any participant.

.SUN workstation
’

CDMS

CDMS: Coltaborative Document Manipulation System
GCP: Group Communicatinn Plattorm

Figure 7. System configuration

Here, the following assumptions about group membership are made to simplify implementation of the GCP.
i) The information for group-work participants(name, address, port number, etc.) is stored in group-table, and
this table is managed by CSCW application(e.g, CDMS in the case of Figure 7).

ii) Organization of group membership is categorized into two types. One is a static group where the group
membership never changes, the other is a dynamic group where members may join or leave at any time.
Only is the static group assumed in this paper, however the modification of group-table according to the cha-
nges of group member in the case of dynamic group is possible by using M_SendData primitive of MSE.

9 A F

5.2 MSE services

MSE services are largely divided into multiple associations management and multicast transmission, and
their algorithms are illustrated in this section.

(1) Multiple associations

Figure 8 shows an algorithm for multiple associations establishment. In this algorithm, MSE first receives
the information for group-work participants from EDTAMSE, then forks as many child processes as participa-
nts and tries to establish multiple associations using ACSEs. In order to increase the degree of concurrent
processing of multiple associations, the fork system call is invoked.

Algorithm for M_ AssociateRequest primitive
input . group_id, group table from MEInfo of parameters
output : return value(OK or NOTOK)
{
initialize entry number from group _table ;
fork as many child processes as entry number(ie., number of group members) ;

if (parent process)
for(; 5) /% wait for responses from ALL child processes %/
{
if (receive OK responses form ALL child processes)
return OK 5
else if (receive responses form ALL child processes, but there is NOTOK)
return NOTOK ;
else
continue ;
}
else /* child process */
{
make MARQ PDU(PDU of M _ AssociateRequest) ;
call A_AssociateRequest primitive with MARQ PDU ;
if (return value of A_AssociateRequest is OK)
set the association state of this member to OK; /#* response to parent */
else
set the association state of this member to NOTOK s /* response */
exit(0)
}

Figure 8. Algorithm for multiple associations

Y. Y.

A Group Communication Platform for Cooperative Works

(2) Multicast transmission

After multiple associations establishment, messages can be multicasted to group-work paricipants with M _
SendData primitive. M_SendData primitive also aggregates all responses as shown in Figure 9, therefore it
returns V‘negative confirm’ to above EDTAMSE if it doesn’t receive response from ahy participant until n(e.

g, 3) consecutive retry.

M SendData
response

M_SendData 1 M_SendData
confirm L—J response

Fk\\\\ M_SendData

response
]

Figure 9. Aggregation of M_ SendData response

Figure 10 shows an algorithm for multicast transmission. Unicast for any specific participant is also possible,

and as many processes as group-work participants are forked in the case of multicast.

Algorithm for M_SendData primitive
input : group id, class, member name
output : return value(OK or NOTOK)
{
if (class == unicast)

{

unicast for member name ;

return OK ;

}

else /% multicast */

{

4 A

initialize entry number from group_id ;
fork as many child processes as entry number ;
if (parent process)
for(; 3) /% wait for responses from ALL child processes */
{ ,
if (receive OK responses from ALL child processes)
return OK ; ‘
else if (receive responses from ALL child processes, but there is NOTOK)
return NOTOK ;
else
continue
}
else /% child process */
{
make MSD_PDU(PDU of M_SendData) ;
call T SendData primitive with MSD_PDU ;
if (return value of T_SendData is OK)
set the send state of this member to OK: /% response to parent */
else /% result is NOTOK */
{
if (NOTOK for n(eg, 3) consecutive T_SendData)
set the send state of this member to NOTOK; /% response */
else
set the send state of this member to OK; /* response */
}
exit(0) .
}
}

Figure 10. Algorithm for multicast transmission

—0Q —

A Group Communication Platform for Cooperative Works

5.3 Locking algorithm of EDTAMSE

Figure 11 shows a locking algorithm using D_Lock primitive of EDTAMSE.

Algorithm for Locking

initialize shared variable semaphorelD to 15
initialize shared memory for lock-table ;
set timeout alarm ;

lock_req() /* process which invokes lock request */
input : object, member id, group_id
output : return value(OK or NOTOK)
{
for G=0: i < MAX_RETRY; i++)
{
P(semaphorelD) ;
check lock state of object in the lock-table 5
if (object is LOCKED state)
{
V(semaphorelD) ;
wait random time ;
continue; /#* retry until MAX RETRY if object is already locked %/
}
else /% FREE state %/
{
call D_LockRequest primitive with object, member id & group_id ;
if (return value of D_LockRequest is OK)
{
set lock state of object to LOCKED(by this member) ;
V(semaphorelD) ;
return OK ;

} .
else if (return value of D_LockRequest is NOTOK)

{
set lock state of object to LOCKED(by other member)..

4 A %

V(semaphorelD) ;
wait random time ;
continue ;
}
else /% timeout alarm */
{
V(semaphorelD) ;
wait random time ;
reset timeout alarm ;
continue 5
}
}
} /% end of for loop */
print locking error message ;
retun NOTOK 5
}
lock_resp() /* process which receives lock request */
input : object, member_id, group id
outsut © return value(OK or NOTOK)
{
P(semaphorelD) ;
check lock state of object in the lock-table ;
if (object is LOCKED state)
{
V(semaphoreID) ;
call D_LockResponse primitive with NOTOK ;
return OK 3
}
else /% FREE state */
{
set lock state of object to LOCKED ;
V(semaphorelD) ;
call D_LockResponse primitive with OK ;
return OK ;
I
}

Figure 11. Locking algorithm

e

A Group Communication Platform for Cooperative Works

When a participant tries to lock an object, a lock-table should be checked whether the object was locked
by another participant or not, and send a lock-request to all participants if the object is in unlocked(free)
state. Lock-request is multicasted to all participants through M_SendData primitive. For the case of system
with multiple participant’s processes, the lock-table is stored in shared memory among processes, and modifi-
cation of table is synchronized by using semaphore. Furthermore, timeout mechanism is used for prevention
of deadlock between lock-request and lock-response.

Above algorithm is similar to Ricart and Agrawala’s optimal algorithm for mutual exclusion®®, but theré are

two differences as follows.
i) For multicast, Ricart and Agrawala’s algorithm makes use of Send Message routine repeatedly with for-
loop, whereas above algorithm use MSE service in order to increase the degree of concurrent processing.
ii) A lock-request process in Ricart and Agrawala’s algorithm waits until it enters critical section, whereas
lock-request process in above algorithm reports error message if request fails unti MAX RETRY.

5.4 Evaluation and other applications

The GCP implementation is verified by tracing the association descriptor, primitives of service elements,
and lock status of shared document.

A_ AssociateRequest. indication

M_ AssociateRequest. indication

ACCEPT —- ¢4

name : edtamd, socket : 4, invitor . 128, 134. 64. 1

called-AE AE-qualifier : edtam AP-id : 0 AE-id: 0

calling-AE AE-qualifier : edtam AP-id: 0 AE-id: 0

edtam : Connection request is arrived from mhkim of Group A

D _InitiateRequest from 128. 134. 64. 1 is accepted

M_SendData. indication

RO _Invoke. indication

Invoke-ID : 1

Lock request is arrived from mhkim

DOC-ID : 12 MODE : 0 OBJECT-TYPE : 1 OBJECT-ID : 345

LOCK M-ID : mhkim DOC-ID : 12 OBJECT-TYPE : 1 OBJECT-ID : 257 STATE : 2

LOCK M-ID : jhyim DOC-ID : 12 OBJECT-TYPE : 3 OBJECT-ID : 279 STATE : 2

LOCK M-ID : mhkim DOC-ID : 12 OBJECT-TYPE : 1 OBJECT-ID : 345 STATE : 2
—— ellipsis ——

A_ReleaseRequest. indication

M _ReleaseRequest. indication

edtam : TerminateRequest is arrived from mhkim

Figure 12. Example of trace

4 A4 ¥

Figure 12 shows an example of trace displayed on one system’s console. In this figure, the value “4” is
the association descriptor among systems, and associations among EDTAM AEs are initiated by a participant
whose IP(Internet Protocol) address is “128.134.64.1”. The progress of D_Initiate through A _Associate and
M _ Associate is also illustrated. After associations establishment, remote manipulation is invoked by RO_In-
voke and M_SendData. If lock-request is issued, then lock-table entries are displayed.

In this paper, though the GCP is used for a collaborative document manipulation prototype system which
provides remote manipulation about shared document replicas distributed in networks, other CSCW applica-
tions such as conferencing system, decision-supporting system also make use of the GCP. For example, let’s

consider the conferencing environment using the GCP as shown in Figure 13.

®©
Conference Conference Conference
Application Application Application
] 1
[cer] [ger] GCP

fer || fem || e
—— |

Figure 13. Conferencing environment

If we assume that conference server maintains original group-table and each conference application has
group-table replica, then the following scenario is possible.
1) A participant P1 sends group-creation request message to conference server by using unicast of M_Send-
Data.
2) Conference server changes group-table, and informs conference applications of that by using multicast of
M_ SendData.
3) Participants P2, P3 and P4 send join request messages to conference server.
4) Like step 2.
5) Conference applications establish associations among them by using M_ Associate, and proceed with a con-
ference by using M_ SendData.

As in the case of above scenario, the dynamic group membership may be used, but server maintaining me-
mbership list is needed.

-—102—

A Group Communication Platform for Cooperative Works

6. Conclusions

This paper describes a design and implementation of the GCP(Group Communication Platform) within the

OSI application layer for supporing the cooperative work among multiple users geograpically distributed in
networks. For maintaining the consistency of shared objects processed by the cooperative work participants,
the GCP is designed and implemented to provide multicast service and lock mechanism. The GCP consists
of existing OSI ASEs such as ACSE and ROSE, and new ASE, called MSE(Multicasting Service Element),
providing multicast services. The GCP is tested as cmmunication protocols for a collaborative document mani-
pulation prototype system using EDTAMSE(Extended DTAMSE).

The major advantages of the GCP are that the modification of operating system kernel is not needed and

the GCP can be used on existing system providing point-to-point communication service.

3.

4.

References

. Navarro, L, Prinz, W and Rodden, T, ‘CSCW requires open systems’, Computer Communications, Vol.16,

No5(May 1993), pp.288—297.

. Vonderweidt, G, Robinson, J, Toulson, C, Mastronardi, J, Rubinov, E and Prasada, B, ‘A Multipoint Com-

munication Service for Interactive Applications’, IEEE Trans. on Communication, Vol.39, No.12(December
1991), pp.1875—1885.

Yamaguchi, S, Shimojo, S and Miyahara, H, ‘Implementation of Multicast Remote Procedure Call’, Proc.
JTC-CSCC ’ 88(1988), pp.85—90.

Clark, WJ, ‘Multipoint Multimedia Conferencing’, IEEE Comm. Magazine, Vol30, No5(May 1992), pp44
=50.

. Crowcroft, J and Paliwoda, K, ‘A Multicast Transport Protocol’, Proc. SIGCOMM ° 88(1988), pp247—256.
. Navaratnam, S, Chanson, S and Neufeld, G, ‘Reliable Group Communication in Distributed Systems’, 8th

Int. Conf. Distributed Computing Systems(1988), pp439—446.

. Halsall, F, Data Communications, Computer Networks and Open Systems, Addison-Wesley, USA(1992).
. CCITT Recommendation T:431, DTAM : Introduction and General Principles(1992).

. CCITT Recommendation T.432, DTAM : Service Definition(1992).

10.
1L

CCITT Recommendation T:433, DTAM : Portocol Specification(1992).
CCITT Draft Recommendation T435, DTAM : Abstract Service Definition and Procedures for Document
Manipulation(1993).

. CCITT Draft Recommendation T.436, DTAM : Protocol Specification for Document Manipulation(1993).

I ¥ a L0

13. ISO 8649/CCITT Recommendation X.217, Service Definition for the Association Control Service Element

(1988).

14. ISO 9072-1/CCITT Recommendation X219, Remote Operations : Model, Notation and Service Definition

(1988).

15. ITU-T Recommendation T.122, Multipoint Communication Service for Audiographics and Audiovisual Con-

4 A %

ferecing Service Definition(1993).

16. Ricart, G and Agrawala, A. K, ‘An Optimal Algorithm for Mutual Exclusion in Computer Netwoks’, Comm.

of ACM, Vol24, No.1(January 1981), pp8-17.

typedef struct deinfo {
int service class ;
struct telematic_req {
int fun_unit ;

Appendix

/%

/* functional unit */

struct telematic req *next;

} *telematic_require ;

Appl CAP *appl_cap
int protocol _version ;
int dtamQOS ;

char *user_info ;

} DEInfo ;

typedef struct meinfo {
char *group id
struct group_entry {

char * member _name ;
char * member_addr ;
unsigned short member port ;

unsigned short s_f;
} group_table()
} MEInfo ;

typedef struct aeinfo }
char *ap_title ;

/* telematic requirement */

/* application capability */

/%
/¥
[*¥
/%

group-identifier */
group member entry */
member name */
member address */

/% success or fail */

.
’

/* application process title */

bulk transfer or manipulation */

/* member prot number */

A Group Communication Platform for Cooperative Works

char *ae_qualifier ; /* application entity qualifier %/
int ap_id s /* application process id */

int ae_id; /* application entity id */-

} AElnfo;

typedef struct m_object }
int document_id; /#* document identifier */
int select_mode ; /* selection of one node or all node in the subtree */
unsigned short object_type s /% object type(e.g, chapter, section, etc.) */
int object_id s /* object identifier */
} M_Object;

P

@/Collection |

