2-Normed Space에 관한 연구

金 章 郁

A Study on 2-Normed Spaces

Kim Chang Wook

Abstract

The notion of a metric is to be regarded as a generalization of the notion of the distance between two points. The notion of 2-metric spaces is obtained by a generalization of the notion of area.

Unfortunately, the level of mathematics on 2 metric (or 2-normed) spaces is not so high, and the theory has not yet been developed until now. However, I think that this is a promising young branch in mathematics.

We mean a linear 2-normed space to be a pair $(L, \|\cdot, \cdot\|)$ where L is a linear space and $\|\cdot\|$. $\cdot\|$ is a real valued function defined on L such that for $x, y, z \in L$

- (1) $\exists x, y \exists = 0$ if and only if x and y are linearly dependent,
- (2) ||x,y|| = ||y,x||,
- (3) For arbitrary real number α ,

$$||\alpha x, y|| = |\alpha| ||x, y||,$$

(4) $||x, y + z|| \le ||x, y|| + ||x, z||$

$$\|\cdot, \cdot\|$$
 is called a 2-norm.

Def 1. A sequence $\{x\}$ in a linear 2-normed space \mathbf{x} is called a cauchy sequence, if there are y and z in \mathbf{x} such that y and z are linearly independent.

$$\lim_{m,n} ||x_m - x_n, y|| = 0, \text{ and } \lim_{m,n} ||x_m - x_n, z|| = 0$$

Theorem 1. Let L be a linear 2-normed space.

- a) If $\{x_n\}$ is a cauchy sequence in L with respect to x and y, then $\{||x_n, x||\}$ and $\{||x_n, y||\}$ are real cauchy sequences.
- b) If $\{x_n\}$ and $\{y\}$ are cauchy sequence in L with respect to x and y, and $\{\beta_n\}$ is a real cauchy sequence, then $\{x_n + y_n\}$ and $\{\beta_n x_n\}$ are cauchy sequences in L.

Proof. a)
$$||x_n, y_i|| = ||(x_n - x_m) + x_m, y_i|| \le ||x_n - x_m, y_i|| + ||x_m, y_i||$$

therefore $||x_n, y|| - ||x_m, y|| \le ||x_n - x_m, y||$.

Similarly, $||x_m, y|| - ||x_n, y|| \le ||x_n - x_m, y||$, that is $|||x_n, y|| - ||x_m, y|| \le ||x_n - x_m, y||$.

Therefore $\{||x_n, y||\}$ is a real cauchy sequence since the $\lim ||x_n - x_m, y|| = 0$.

2 1981年 4月 韓國海洋大學論文集 第16輯

Similarly, $\{||x_n, x||\}$ is a real cauchy sequence.

b)
$$||(x_n + y_n) - (x_m + y_m), x|| = ||(x_n - x_m) + (y_n - y_m), x|| \le ||x_n - x_m, x|| + ||y_n - y_m, x|| \to 0$$

Similarly, $||(x_n + y_n) - (x_m + y_m), y|| \to 0$

Therefore $\{x_n + y_n\}$ is a cauchy sequence in L.

$$\begin{aligned} ||\beta_{n}x_{n} - \beta_{m}x_{m}, x|| &= ||(\beta_{n}x_{n} - \beta_{n}x_{m}) + (\beta_{n}x_{m} - \beta_{m}x_{m}), x|| \\ &\leq ||\beta_{n}x_{n} - \beta_{n}x_{m}, x|| + ||\beta_{n}x_{m} - \beta_{m}x_{m}, x|| \\ &= |\beta_{n}|||x_{n} - x_{m}, x|| + |\beta_{n} - \beta_{m}|||x_{m}, x|| \\ &\leq C_{1}||x_{n} - x_{m}, x|| + C_{2}||\beta_{n} - \beta_{m}|| \to 0 \end{aligned}$$

using the fact that $\{\beta_n\}$ and $\{||x_n, x||\}$ are real cauchy sequence and hence bounded. Similarly, $||\beta_n x_n - \beta_m x_m, y|| \rightarrow 0$.

Therefore $\{\beta_n x_n\}$ is a cauchy sequence in L.

Def 2. A sequence $\{x_n\}$ in a linear 2-normed space x is called a convergent sequence,

If there is an x in X such that

$$\lim_{m}||x_m-x,y||=0$$

for every y in X.

Def 3. A linear 2-normed space in which every Cauchy sequence in convergent is called a 2-Banach space.

Theorem 2. In any linear 2-normed space L:

- a) If $x_n \rightarrow x$ and $y_n \rightarrow y$, then $x_n + y_n \rightarrow x + y$,
- b) If $x_n \rightarrow x$ and $\beta_n \rightarrow \beta$, then $\beta_n x_n \rightarrow \beta x$,
- c) If dim $L \ge 2$, $x_n \to x$ and $x_n \to y$, then x = y.

Proof, a)
$$||(x_n + y_m) - (x + y), c|| = ||(x_n - x) + (y_n - y), c||$$

 $\leq ||x_n - x, c|| + ||y_n - y, c|| \to 0.$

Therefore $x_n + y_n \rightarrow x + y$.

b)
$$||\beta_{n}x_{n} - \beta x, c|| = ||\beta_{n}x_{n} - \beta_{n}x + \beta_{n}x - \beta x, c||$$

 $\leq ||\beta_{n}x_{n} - \beta_{n}x, c|| + ||\beta_{n}x - \beta x, c||$
 $= ||\beta_{n}|| ||x_{n} - x, \beta|| + ||\beta_{n} - \beta|| ||x, c||$
 $= c||x_{n} - x, c|| + ||\beta_{n} - \beta|| ||x, c||$

Using the fact that a real convergent sequence in bounded. Therefore $\beta_n x_n \rightarrow \beta x$ since the $\lim ||x_n - x|| = 0$ and the $\lim |\beta_n - \beta| = 0$.

c)
$$||x-y, c|| = ||(x_n-y)-(x_n-x), c||$$

 $\leq ||x_n-y, c|| + ||-(x_n-x), c||.$

Therefore ||x-y|, c||=0 for all $c \in L$,

since $x_n \rightarrow x$ and $x_n \rightarrow y$. Hence x - y and c are linearly dependent for all $c \in L$.

Since the dim $L \ge 2$, the only way x-y can be linearly dependent with all vectors $c \in L$, is for x-y=0.

Example 1. Let E_3 denote Euclidean vector three space. Let $x = x_1i + x_2j + x_3k$ and $y = y_1i + y_2j + y_3k$

Define
$$||x, y|| = |x \times y| = \text{abs} \begin{vmatrix} i & j & k \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{vmatrix}$$

$$= \{ (x_2y_1 - x_2y_2)i + (x_3y_1 - x_1y_3)j + (x_1y_2 - x_2y_1)k \}$$

$$= \{ (x_2y_2 - x_2y_2)^2 + (x_3y_1 - x_1y_2)^2 + (x_1y_2 - x_2y_1)^2 \}^{\frac{1}{2}}$$

Then $(E_3, ||\cdot, \cdot||)$ is a 2-Banach space.

Example 2. Let p_n denote the set of all real polynomials of degree $\leq n$ on the interval [0,1]We define addition and scalar multiplication in the usual way. Then p_n is a linear space over reals. Let $\{x_n\}$ $(n=1, 2, \dots, 2n+1)$ be given 2n+1 point in [0, 1].

For f, g, we put

$$||f,g|| = \sum_{i} |f(x_i) \times g(x_i)|$$

If f, g are linearly independent, and ||f, g|| = 0, if f, g are linearly dependent. Then p_n is a 2-Banach space.

On the other hand, there is a linear 2-normed space of dimension 3 which is not a 2-Banach space.

Example 3. Let E_3 denote Euclidean Vector three space where all coefficients are rationals, over the field of rationals. E_i is a linear space.

Define $\|\cdot, \cdot\|$ in E_3 as in Example 1. Let

$$x_n = \sum_{k=0}^{n} 10^{\frac{-k(k+1)}{2}} i. ||x_n - x_m, i|| = 0$$
 hence the

 $\lim_{i \to \infty} |x_n - x_m, i| = 0$. The

$$\lim_{||x_n - x_m, t|| = 0} ||x_n - x_m, t|| = 0. \quad \text{Inc}$$

$$\lim_{||x_n - x_m, j|| = \lim_{|x_n = 0}^{\infty} 10} \left| \sum_{k=0}^{n} 10^{\frac{-k(k+1)}{2}} - \sum_{k=0}^{n} 10^{\frac{-k(k+1)}{2}} \right| = 0$$

since
$$\left\{\sum_{k=0}^{n} 10^{\frac{-k(k+1)}{2}}\right\}$$
 is a real cauchy sequence.

Since i and j are linearly independent, $\{x_n\}$ is a cauchy sequence in E. Assume there is any $x = x_1 j + x_2 j + x_3 k \epsilon E_3$ such that $x_n \rightarrow x$. Therefore the lime $||x_n - x_j|| = 0$,

that is, the

$$\lim_{n \to \infty} \left[\left(\sum_{k=0}^{n} 10^{\frac{-k_1 k + 1}{2}} - x_1 \right)^k + x_2 \right]^{\frac{1}{k}} = 0.$$

Clearly x_3 must be 0. Hence the $\lim_{k=0}^{n} 10^{\frac{-k(k+1)}{2}} = x_1$. $\left\{\sum_{k=0}^{n} 10^{\frac{-k(k+1)}{2}}\right\}$ converges in the real number of the converges of the real number of the converges of the converges of the real number of the converges of the convergence of the c mber system to an irrational number.

Therefore a must be irrational. Since E_a is over the field of rationals, this is impossible.

Therefore E_3 is not a 2-Banach space.

But every 2-normed space of dimension 2 is a Banach space when the underlying field is complete.

Theorem 3. Every 2-normed space of dimension 2 is a 2-Banach space, when the underlying field is complete.

Proof, Let B be a linear 2-normed space with basis $\{e_1, e_2\}$. Let $\{x_n\}$ be a cauchy sequence in B. Therefore there exists linearly independent vector a and b in B such that the $\lim |x_n - x_m, a| = 0$ and the $\lim ||x_n - x_m, b|| = 0$.

4 1981年 4月 韓國海洋大學論文集 第16輯

Let $x_n = x_{n_1}e_1 + x_{n_2}e_2$, $a = a_1e_1 + a_2e_2$ and $b = b_1e_1 + b_2e_2$.

now $||(x_n-x_m),a||=||(x_{n_1}-x_{m_1})e_1+(x_{n_2}-x_{m_2})e_2, a_1e_1+a_2e_2||=|a_2(x_{n_1}-x_{m_1})-a_2(x_{n_2}-x_{m_2})|||e_1,e_2||$

Similarly $||(x_n-x_m),b|| = |b_2(x_{n_1}-x_{m_1})-b_1(x_{n_2}-x_{m_2})|||e_1,e_2||$.

Since e_1 and e_2 are linearly independent $||e_1, e_2|| \neq 0$.

Therefore the $\lim |a_2(x_{n_1}-x_{m_1})-a_1(x_{n_2}-x_{m_2})|=0$ and the $\lim |b_2(x_{n_1}-x_{m_1})-b_1(x_{n_2}-x_{m_2})|=0$. Hence the

$$\lim [a_2b_2(x_{n_1}-x_{m_1})-a_1b_2(x_{n_2}-x_{m_2})]=0$$

and the

$$\lim \left[-a_2b_2(x_{n_1}-x_{m_1}) + a_2b_1(x_{n_2}-x_{m_2}) \right] = 0.$$

Therefore by addition the $\lim (a_2b_1-a_1b_2)(x_{n_2}-x_{m_2})=0$.

 $a_2b_1-a_1b_2=0$ implies $\frac{a_1}{a_2}=\frac{b_1}{b_2}$ which is impossible, since a and b are linearly independent.

Hence, the $\lim |x_{n_2}-x_{m_2}|=0$, that is, $\{x_{n_2}\}$ is a cauchy sequence. Also, the $\lim \{a_2b_1(x_{n_1}-x_{m_1})\}$ $-a_1b_1(x_{n_2}-x_{m_2})$ = 0 and the $\lim[-a_1b_2(x_{n_1}-x_{m_1})+a_1b_1(x_{n_2}-x_{m_2})]=0$.

Therefore by addition, the $\lim(a_2b_1-a_1b_2)(x_{n_1}-x_{m_1})=0$.

Since $a_2b_1-a_1b_2 \neq 0$, the $\lim |x_{n_1}-x_{m_1}|=0$, that is, $\{x_{n_1}\}$ is a cauchy sequence.

Since $\{x_{n_1}\}$ and $\{x_{n_2}\}$ are real cauchy sequences, there are real numbers y_1 and y_2 such that the $\lim x_{n_1} = y_1$ and the $\lim x_{n_2} = y_2$.

Let $x = y_1e_1 + y_2e_2$. Claim $x_n \rightarrow x$. Let $c = c_1e_1 + c_1e_2$ be an element of B. The

 $\lim ||(x_n-x),c|| = \lim ||(x_{n_1}-y_1)e_1+(x_{n_2}-y_2)e_2|, \quad c_1e_1+c_2e_2|| = \lim ||c_2(x_{n_1}-y_1)-c_1(x_{n_2}-y_2)|||e_1,e_2|| = 0$ since the $\lim x_{n_1} = y_1$ and the $\lim x_{n_2} = y_2$.

Therefore $x_n \rightarrow x$, that is, B is a 2-Banach space.

Next we shall explain a very important result about a 2-normed space.

Let X be a 2-normed space, and Let a be a given non-zero element of X. We denote the 1dimensional linear space generated by a by L(a). Then we can consider the quotient space

X/L(a). As well known, this space X/L(a) is also a linear space:

For x in X, Let x a denote the equivalence class of x. Then the addition and the scalar multiplication are given by

$$x_a + y_a = (x + y)_a$$
, $\alpha x_a = (\alpha x)_a$.

If $x_a = y_a$, then we have

$$|||x,a||-||y,a||| \le ||x-y,a|| = 0.$$

Hence, $||x,a|| = ||y,a|| \cdots$. Therefore the real valued function $||\cdot||_a$ given by $||x_a||_a = ||x,a||$ is welldefined. Then this new function is a norm on X/L(a).

- (1) $||xa||_a=0$ if and only if ||x,a||=0, if and only if $x \in L(a)$, if and only if $x_a=0$.
- (2) $||\alpha x_a||_a = ||(\alpha x)_a||_a = ||\alpha x, \alpha|| = |\alpha|||x, \alpha|| = |\alpha|||x_a||_a$
- (3) $||x_a + y_a||_a = ||(x + y)_a||_a = ||x + y, a|| \le ||x, a|| + ||y, a|| = ||x_a||_a + ||y_a||_a$

Hence X/L(a) is a normed space.

Theorem 4. Let X be a 2-normed space. For a non-zero element a in X, the quotient space X/(a) is a normed space, where L(a) is the 1-dimensional linear space generated by a.

Reference

- 11 L.M. Blumenthal, Theory and Applications of Distance Geometry, oxford 1953.
- 12. S. Polewicz, On a certain classes of linear metric spaces, Bull. Acad. Polon. Sci.
- (3) J. BAKER, Isometries in Normed Spaces, Amer. Math. Monthly 78, 655-657 (1971).

