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A Study on 2-Normed Spaces

Kim Chang Wook
Abstract

The notion of a metric is 10 be regarded as a generalization of the notion of the distance
between two points.  The notion of 2-metric spaces is obtained by a generalization of the netion
of area,

Unfortunately, the level of mathematics on 2 metric (or 2-normed) spaces is not o high, and
the theory has not yet been developed until now. However, | think that this is a promising veoung

branch in mathematics.

We mean a lincar 2-normed space to be a pair (L, i+, «!!) where L is a lincar space and ; -,
it is a real valued {unciion defined on L such that for x, v, zcL

(1) "x,»!=0 il and only i{ x and y are lincarly dependent,

(2) Hx, vii=ily, a,

(3) TFor arbitrary real number e,

Pax, vl = lalllx, i,

Sy b !
Sl i+

N

X,

)

e, <1 1s called a 2-norm.
Del 1. A sequence {x} in a lincar 2-normed space x is called a cauchy sequence, if there are
yand z in x such that v and z are linearly independent.

=0

hmilx. — ., v i=0, and lim}ix. — x.

»yn mn

Theorem 1. Let L be a linear 2-normed space,

a) Il [x. is a cauchy sequence in L with respect to x and v, then {ilx., xlt} and ['x, v

real cauchy sequences.
by M {x} and {»} are cauchy sequence in L with respect 1o x and ¥, and! 5.} is a real cauchy

sequence, then {x.+y.) and {3.x.} are cauchy sequences in L.

Proof. a) fve =100 0n) + xo, 302 1 = 0, 31+ 120m, 3]
therefore {lr, yil = {lxm, 315 = X, yil.
Similarly, U, it = e, 21U =, 31, that Bs b, 3= s, 311 < xa — Xm, L.

Therefore {ilx., ¥il] is a real cauchy sequence since the Hm |lx. = xm, v|] =0.
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Similarly, {llxs, xl|} is a real cauchy sequence.
b) 11(xa+32) = (Xm+ym), 2 =11 (xn— 2m) + (Yu—Ym), X Z 120 — Zom, 21| + 130 — Y, 2116
Similarly, 11(xs+3x) — (Xm+ym), 1|0
Therefore {x.+y.} is a cauchy sequence in L.
HPBw%Xn— Brmxm, %11 =1 (Baxn— Bum) + (BaXm— Bmxm), xl}
S1Baxn— Baxim, %]+ | Brtm— Bmkm, x|
= [ Balll%n— xm, x|+ | Bn— fim | | 2xm, %1}
S Cillxn = xm, x|l + Cy | Br— Bm| =0
using the fact that {$.} and {|lx, x|} are real cauchy sequence and hence bounded.
Similarly, [18:%x— Bmxm, yI|—0.
Therefore {B.x.} is a cauchy sequence in L,
Def 2. A sequence {x.} in a linear 2-normed space x is called a convergent sequence,
If there is an x in X such that

liml|xm—x, yl| =0

for every y in X.
Def 3. A linear 2-normed space in which every Cauchy sequence in convergent is called a 2-
Banach space.
Theorem 2. In any linear 2-normed space L:
a) If x—x and y.—y, then xn+y.—2x+y,
b) If x:—x and B.—pB, then f.x.—fx,
¢) If dim Lz2, x.—x and x.—y, then x=y.
Proof, a) [[(xs+ys) = (x+3), cl=l{xa=1%) + (3:=3), cll
Sllxn—x, cll+llya—y, cll—0.
Therefore x.+y.—x+y.
b) 11Buxn—Bx, cll=11Bnxn— Bux+ Bux— Bx, cll
SlBrxn— Bax, cll+118x—Bx, cll
=|falllxa—x, Bl + | Ba—Bl1Ix, cll
=cllx.=—x, cli+ 18— Blllx, cll
Using the fact that a real convergent sequence in bounded. Therefore B.x.—fx
since the lim |lx.—=x, ¢||=0 and the lim |8.—8[=0.
¢) lx—y, ci=(x—y) = (xa—x), cll
Sla—y, dl+ll-(x—x), cll.
Therefore llx—y, cll=0 for all ceL,
since x.—x and x.—>y. Hence x—y and ¢ are linearly dependent for all ceL.
Since the dim L=2, the only way x—y can be linearly dependent with all vectors ccL, is for
x—y=0.
Example 1. Let E, denote Euclidean vector three space. Let x=xi+x,7+x:k and y=yi+y,j+
Yk
ij ok
Xy X X3
Y1 Y Vs

Define llx, yll=|x xy| =abs
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=0y, —x)i+ (233, —xx}’s)j+ (xly_-—xzyi)kl
N a vxé
=((xy,—x3) + (i —x13) + iy —xeyi)
Then (E,, ||+, -1l) is a 2-Banach space.
Example 2. Let p. dencte the set of all real polynomials of degree =n on the interval (0, 1]
We define addition and scalar multiplication in the usual way. Then p. is a linear space ovey
reals. Let {x.] (n=1.2,---" ,2n+1) be given 2n+1 point in [0.11.
For f, g, we put
Nf, glt= 21 f(x) xg(xi) |

If f,g are linearly independent, and IIf, gli=0, if f,g are linearly dependent. Then p. is @
2-Banach space.

On the other hand, there is a linear 2-normed space of dimension 3 which is not a 2-Banach
space.

Example 3. Let E, dencie Euclidean Vector three space where all coefficients are rationals,
over the field of rationals. E, is a linear space.

Define ||+, +il in E, as in Example 1. Let

kT

x= 2,10 7 xn — xm, 1= 0 hence the
k=0

Himiix, — xm, 11l=0. The

Ll st htdln b
timiL. — xm, jil=lim| S0 _ﬁ%m : k:o
RA
since {2510 : & is a real cauchy sequence.

Since 7 and j are linearly independent, {x.} is a cauchy sequence in E.. Assume there is are
x=x,j+x,j +x:keE; such that x.—x. Therefore the limeljx.—x, jll=0,
that is, the

Rk
e T Lo
th(E:lO —x1> +x;_j =0.
—~k(k+1 —kik+1
Clearly x; must be 0. Hence the lim2:10 To=a {ZlO ’ } converges in the real nu-
k=0 k=0

mber system to an irrational number.

Therefore a must be irrational. Since E; is over the field of rationals, this is impossible.

Therefore E, is not a 2-Banach space.

But every 2-normed space of dimension 2 is a Banach space when the underlying field is com-
plete.

Theorem 3. Every 2-normed space of dimension 2 is a 2-Banach space, when the underlying
field is complete.

Proof, Let B be a linear 2-normed space with basis {e,, e,}. Let {x.} be a cauchy sequence in
B. Therefore there exists linearly independent vector a and b in B such that the lim||x» —xm, all=0
and the limllx.— xm, 811 =0.
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Let xu=xae + xnse,, @=a¢1+ae, and b=be, +bye,.

NOW 11 (xa = m), @ll =11 (a1~ 2m )€1 + (2 — 2ms) e, e, taell=[a (xn — xm) = @y (%ny — 2my) [ lley, el

Similarly 1} (x.—xm), 8] = 102 (Xny = %m1) = By (dny — 2my) ey, esll.

Since ¢; and ¢, are linearly independent lley, el #0.

Therefore the im|a@, (xu)— xm;) —a, (%22 —%m) | =0 and the lim b, (ony = 2tm1) = by (g ~ 2my ) | =00.
Hence the

lim(a,b, (%, — %m1) ~a,8, (%0, —xmy) =0

and the

mC— @b, (%n; = xm1) +ab, (2 —xm)]=0.
Therefore by addition the im(a,b; —a,b,) (%Xny — 2my) =0.

@by —~a,b, =0 implies hgf =~g—‘1- which is impossible, since ¢ and & are linearly independent.

Hence, the im | %~ xm, | =0, that is, {xx) is a cauchy sequence. Also, the lim{a;b; (%ny = xm;)
— @10, (%ny — xmy) ] =0 and the Hm{~ a8y (xe; — xmy) + @b (xny— xmy) ] =0.

Therefore by addition, the im(asb, —a,8,) (%a) — 2my) =0.

Since a,b;—ab,%0, the lim | %x; — xm; | =0, that is, {xa} is a cauchy sequence,

Since {xx} and {x.,} are real cauchy sequences, there are real numbers y; and y, such that
the lim x.,=y, and the lim Xns =Y.

Let x=y.e, +ye,. Claim %—x. Let ¢=cie;+ce, be an element of B. The

limll(x,.—x),cll=IimH(xn1 —yer+ (%n, =y)e, ce +aell=lim|ec, (x., =31) = C; (Xny =y.) e, el =0

since the lim x.,=y, and the lim Xny =3,

Therefore x.—x, that is, B is a 2-Banach space,

Next we shall explain a very important result about a 2-normed space.

Let X be a 2-normed space, and Let a be a given non-zero element of X. We denote the 1-
dimensional linear space generated by a by L(a). Then we Can consider the quotient space
X/L(a). As well known, . this space X/L(a) is also a linear space:

For x in X, Let x a denote the equivalence class of x.

Then the addition and the scalar multiplication are given by

XatYe=(¥+3)a, axe=(ax)a.

If xa=ya, then we have

M, @l =11y, alll <llx—y, al]=0.

Hence, ilx,all=Ily,all--. Therefore the real valued function ||-|l, given by lixdla=llx,al] is
welldefined. Then this new function is a norm on X/L(a).

(1) lixalla=0 if and only if |Ix,al|=0, if and only if xeL(a), if and only if x,=0,
2) laxdla=l|(ax)dlo=llax, all = |a||ix, al| = la|llxlla
(3) Hxa+yal|a=H(x+y)alla=llx+y,all§Hx,aH+Hy,aH=llxalla+Hyalla

Hence X/L(a) is a normed space.

Theorem 4. Let X be @ 2-normed space. For a non-zero element ¢ in X, the quotient space
X/(a) is a normed space, where L(a) is the 1-dimensional linear space generared by g,
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