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Abstract 

Tracking refers to the estimation of the state of a target on motion with some 

degree of accuracy given at least one measurement. The measurement, which is 

the output obtained from sensors, contains system errors and errors resulting from 

the surrounding environment. Tracking filters play the key role of target state 

estimation after which the tracking system is updated. Therefore, the type of filter 

used in carrying out the estimations is crucial in determining the integrity and 

reliability of the updated value. This is especially true since different filters vary 

in their performance when subjected to different environments and initial 

conditions of motion dynamics. In addition, applications of different filter design 

methods have previously confirmed that filtering performance is a tradeoff 

between error reduction and a good transient response. Therefore, the criteria for 

selecting a particular filter for use in a tracking application depends on the given 

performance requirement. 

This study explores and investigates the operation of the Kalman filter and 

three α-β-γ tracking filter models that include Benedict-Bordner also known as 

the Simpson filter, Gray-Murray model and the fading memory α-β-γ filter.  These 
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filters are then compared based on the ability to reduce noise and follow a high 

dynamic target warship with minimum total lag error.  The total lag error is the 

cumulative residual error computed from the difference between the true and the 

predicted positions, and the true and estimated positions for the given data 

samples. The results indicate that, although the Benedict-Bordner model performs 

poorly compared to the other filters in all aspects of performance comparison, the 

filter starts off sluggishly at the beginning of the tracking process as indicated by 

the overshooting on the trajectories, but stabilizes and picks up a good transient 

response as the tracking duration increases. The Gray-Murray model, on the other 

hand, demonstrates a better tracking ability as depicted by its higher accuracy and 

an even better response to a change in the target’s maneuver as compared to the 

Benedict-Bordner model. The Fading memory model out-performs the other two 

α-β-γ filters in terms of tracking and estimation error reduction, but based on 

sensitivity to target maneuvers and variance reduction ratio the Gray-Murray 

model demonstrates a slightly better performance. The Kalman filter, on the other 

hand, has a higher tracking accuracy compared to the α-β-γ filters which, however, 

have a higher sensitivity to target maneuvers and data stability as indicated by the 

steadier trajectories obtained. These results are a further proof that no one 

particular filter is perfect in all dimensions of selection criteria but it is rather a 

compromise that has to be made depending on the requirement of the physical 

system under consideration.  

 

Key words: α-β-γ filters, Kalman filter, performance comparison, tracking 

accuracy, stable response 
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Chapter 1. Introduction 

1.1 Scope  

The tracking radar system has a wide application in both the military and 

civilian fields. In the military, tracking is essential for air traffic control, fire 

control and missile guidance and target interception during defensive situations, 

whereas in commercial application it is useful for not only controlling traffic of 

manned maneuverable vehicles such as ships, submarines and aircrafts which 

require accurate tracking, but also for collision avoidance.  

A high dynamic warship is defined by high speed and quick maneuvering 

characteristics. Therefore, prompt and accurate estimations of the dynamic 

parameters is essential for a high degree of precision in tracking in order to make 

well calculated decisions especially in defensive situations. A variety of 

algorithms differing in implementation complexities have been developed over 

the years in order to realize the tracking process which involves the use of special 

filters to aid in noise reduction hence achieving accurate predictions. Some of the 

tracking filters in use today in many tracking applications are the Kalman filter 

and α-β-γ filter where the latter is an extension of the α-β filter aimed at tracking 

an accelerating target since the α-β filter is only effective when the target model 

input is a constant velocity. 

This research aims to compare the performance of the filters employed to track 

a high dynamic warship from a stationary own ship. The comparison criteria 

involves comparing the filters’ capability to reduce noise and steadily follow the 

highly maneuvering target. The Kalman filter and three α-β-γ filter algorithms 

have been investigated and discussed. The α-β-γ filters include the Benedict-

Bordner model which is also known as the Simpson filter, Gray-Murray model 

and the fading memory α-β-γ filter (critically damped filter). The four filtering 
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algorithms are executed under similar initial conditions for a target model moving 

at a high speed and possessing quick maneuvering characteristics. The simulation 

results are then obtained and subsequently performance comparison is carried out. 

The critically damped filter was optimized by adjusting the value of the 

discounting parameter, 𝜉, experimentally where it was explicitly noted that the 

optimum set of the smoothing coefficients depends on the initial speed and 

average speed of the target under consideration. The details regarding the 

optimization procedure are further discussed in Chapter 3. The Kalman filter 

employed in this study uses fixed values of the measurement and maneuverability 

noise covariance R and Q respectively which were carefully selected and tuned to 

avoid divergence of the data samples. 

The subsequent sections of this chapter include a brief description of the role 

of a filter in a physical process followed by a study on the literature review based 

on previous researches regarding tracking filters. 

 

1.2 Literature  

1.2.1 The role of a filter in a physical system 

External inputs and controls are the driving elements of a given physical 

system such as radar tracking system, inertial navigation system, GPS, chemical 

plant etc.  

Outputs of such a system are provided by measuring devices or sensors. 

Therefore, the system’s behaviour can be evaluated and understood through the 

inputs and observed outputs. However, since no known system is error- free, the 

observation contains errors, leading to uncertainties, obtained from the measuring 

devices of the system. The observed measurement provides the input, which can 

be in the form of a position measurement and a measurement noise, to a filter 
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which then plays the key role of obtaining an estimate of the desired system’s 

state that enhances the system’s performance based on a given design requirement. 

The flow chart in Fig. 1.1 illustrates the typical filtering problem where the 

filter in this case can be either α-β-γ or Kalman filter. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.1 Block diagram of filter application on a physical system 

        <Adapted from Maybeck, 1990> 

 

In this study, the tracking filter algorithms are incorporated into the control 

loop of the processor which employs the observed measurements obtained from 

a track-while-scan (TWS) radar that performs the tracking of targets as the 

antennae rotates at a constant rate of 20 RPM searching the vicinity for target 

acquisition. 

1.2.2 Literature Review  

The role that tracking filters play in an automatic target tracking system cannot 

be overemphasized. This has led to, in the recent past, a rise in the number of 
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research work that is heavily invested in their improvement, particularly the 

performance of the α-β-γ and Kalman filters due to their diverse applications in 

many fields, which has consequently resulted in the adoption of a wide range of 

valuable insights for the purpose of their design enhancement.  

Benedict et al (1962) carried out an analysis of the α-β filter based on the 

frequency domain (Z- transform). The study proposed a relationship between the 

α and β filtering coefficients derived from a pole matching technique in order to 

optimize the tracker’s ability to reduce noise and achieve a good transient 

performance. This led to what is today known as the Benedict-Bordner model 

relationship. Simpson (1963) further extended this study to the α-β-γ filter by 

including the constant acceleration term thus arriving at the optimization 

condition between the filtering coefficients. 

Kalata (1984) proposed the use of a tracking index which relates the filter 

coefficients and is a function of position uncertainty due to target maneuverability, 

radar measurement uncertainty and update time interval. He utilized the tracking 

index parameter to derive implicit closed form equations of the smoothing 

coefficients which resulted in optimal performance. Later, Gray et al (1993) 

presented a more convenient way to determine the optimal filtering weights 

whereby a damping parameter that computes the position smoothing coefficient 

directly was derived analytically from the Kalata tracking index. 

Tenne et al (2002) derived closed form solutions of an optimal α-β-γ filter 

whose performance was based on noise reduction ratio, steady state maneuver 

error and transient response for circular and straight line trajectories and 

subsequently determining a figure of demerit. 

Njonjo et al (2016) investigated the performance of the fading memory α-β-γ 

filter on a high dynamic warship. The research concluded that the filter was 

capable of tracking the highly maneuvering vessel with an acceptable level of 
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accuracy in terms of noise reduction. Pan et al (2016) further extended this 

research where the filter was optimized in order to improve its tracking ability by 

reducing the noise further and achieving a better precision in prediction. The 

optimization procedure involved varying the value of the discounting factor, ξ, 

with the sum of the residual error and determining the ξ that corresponded to the 

minimum error. The study demonstrated that the optimal filter uniquely varies 

with the initial speed and average speed of the target under consideration.  

Various researchers have dedicated their time in carrying out performance 

comparison of different filter design methods based on a variety of differing 

criteria for comparison. Lawton et al (1998) distinguishes among four types of 

filtering methods including α-β filter, augmented α-β filter, linear Kalman filter 

and extended Kalman filter for tracking a non-maneuvering target. All the four 

filters examined are shown to yield the same results when tested under benign 

condition in which all measurement data is available. Under conditions in which 

huge portions of the measurements are lost, the extended Kalman filter produces 

better estimates compared to the other filters. 

Blair et al (1991) compares the two-stage α-β- γ̅  filter estimator with the 

standard α-β filter and α-β-γ filter in tracking a maneuvering target whereby the 

results indicate that the two-stage α-β-γ̅ estimator performs better in the tracking 

of maneuvering targets hence have increased potential for tracking targets within 

combat systems that are responsible for tracking and engaging a large number of 

targets. 

The Kalman filter aims to minimize the mean squared error as long as target 

dynamics are modelled accurately. It makes optimal use of the target 

measurements by adjusting the filter weights to take into account the accuracy of 

the nth measurement as described by Brookner (1998). Therefore, the optimal 

values of the smoothing parameters are dependent on the nth sample. 



- 6 - 

 

This study aims to compare the performance of the Benedict-Bordner α-β-γ 

filter model, the Gray-Murray model, the Fading memory model and Kalman 

filter for tracking a high dynamic warship from a stationary own ship. The 

comparison criteria involves comparing the filter’s capability to reduce noise and 

steadily follow a maneuvering target. In this study, the fading memory α-β-γ filter 

used is an optimal filter whose optimization procedure involved fine- tuning the 

damping parameter the result of which determines the α, β and γ  filtering 

coefficients as discussed in Chapter 3. The Kalman filter employed in this study 

uses fixed values of the measurement and dynamic noise covariance R and Q 

respectively which were determined and selected through an iterative trial and 

error method in order to arrive at the best values that meet the requirements of 

sensitivity to target maneuvers and noise reduction. 

1.3 Methodology and Contents 

This thesis carries out the analysis of three α-β-γ tracking filters and the 

Kalman filter by comparing their tracking performance. The performance is based 

on three design requirements as follows;  

i. Tracking and estimation error reduction,  

ii. Sensitivity to target maneuvers and output data stability and, 

iii. Variance reduction ratio (VRR). 

Tracking and estimation error reduction capability is determined by computing 

the total residual obtained from the deviation from the true positions to the 

prediction and estimation positions respectively for the given sample for each 

filter design method. The filter design method that results in the smallest residual 

is considered to out-perform the others in this respect. 

  With regard to ability to follow target maneuvers with sensitivity and possess 

output data stability in this study, trajectories are observed for fluctuations and 
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overshooting at various points thus depicting the filter’s stability and ability to 

steadily track the desired signal as close as possible. 

In addition, the variance reduction ratio (VRR), a measure of the measurement 

error reduction is computed from the ratio of the root mean square noise output to 

the root mean square noise input which are functions of the filtering weights 

(Mahafza et al, 2004). Eq. (1.1) represent the variance reduction in the position, 

Eq. (1.2) is the variance reduction ratio in the velocity, and Eq. (1.3) shows the 

variance reduction ratio in the acceleration. The filter design method resulting in 

the smallest values is said to perform better in terms of measurement noise 

reduction.  

(𝑉𝑅𝑅)𝑥 =
2𝛽(2𝛼2+2𝛽−3𝛼𝛽)−𝛼𝛾(4−2𝛼−𝛽)

(4−2𝛼−𝛽)(2𝛼𝛽+𝛼𝛾−2𝛾)
        (1.1)                     

(𝑉𝑅𝑅)𝑥̇ =
4𝛽3−4𝛽2𝛾+2𝛾2(2−𝛼)

𝑡2(4−2𝛼−𝛽)(2𝛼𝛽+𝛼𝛾−2𝛾)
         (1.2) 

(𝑉𝑅𝑅)𝑥̈ =
4𝛽𝛾2

𝑡4(4−2𝛼−𝛽)(2𝛼𝛽+𝛼𝛾−2𝛾)
         (1.3) 

 

The rest of this research is organized as follows; chapter two contains the 

theory of tracking filters that have been considered for this study; Chapter three 

includes the simulation of the desired motion signal and the results and discussion 

and; finally chapter four contains the concluding remarks and further research on 

this topic. 
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Chapter 2. Theory of Tracking Filters 

2.1 Theory of α-β-γ Tracking Filter  

α-β-γ filter is a constant gain, three- state tracking filter where the three state 

vector includes position, velocity and acceleration. The acceleration is assumed 

to be constant and includes zero mean white Gaussian noise. The filter is easy to 

design and implement due to its low computational load as it has only three design 

parameters, that is α, β and γ, from which the performance indices, such as filter 

stability and tracking ability, can be evaluated.  In addition, the smoothing 

coefficients of the filter are constant for a given sensor which further contributes 

to its design simplicity. As a result, it has been applied to many tracking systems. 

The algorithm involves two major stages of computations, that is, prediction 

and smoothing (Mahafza et al, 2004). Prediction is performed through execution 

of Eq. (2.1) for position, Eq. (2.2) for velocity and Eq. (2.3) for acceleration where 

the respective states are updated from the estimated (smoothed) state thereby 

attenuating the tracking error.  

 

Prediction equations; 

𝑃𝑃(𝑛) = 𝑃𝑠(𝑛 − 1) + 𝑡𝑉𝑆(𝑛 − 1) +
𝑡2

2
𝐴𝑠 (𝑛 − 1)                                                 (2.1) 

𝑉𝑃(𝑛) = 𝑉𝑠(𝑛 − 1) + 𝑡𝐴𝑠 (𝑛 − 1)                                                                            (2.2) 

𝐴𝑃(𝑛) = 𝐴𝑠(𝑛 − 1)                                   (2.3) 

 

Eq. (2.4) is the smoothing equation for position, Eq. (2.5) for velocity and Eq. 

(2.6) represents the smoothing equation for acceleration. These equations are used 
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to obtain the updated target’s states and are computed by adding a weighted 

difference between the observed position and the predicted position to the forecast 

state. 

 

Smoothing equations; 

𝑃𝑠(𝑛) = 𝑃𝑃(𝑛) + 𝛼(𝑃𝑜(𝑛) − 𝑃𝑃(𝑛))                           (2.4) 

𝑉𝑠(𝑛) = 𝑉𝑝(𝑛) +
𝛽

𝑡
(𝑃𝑜(𝑛) − 𝑃𝑃(𝑛))                                          (2.5)      

𝐴𝑠 (𝑛) = 𝐴𝑝 (𝑛) +
2𝛾

𝑡2 (𝑃𝑜(𝑛) − 𝑃𝑃(𝑛))                                         (2.6)        

 

Definition of terms 

(1) the predicted target position is denoted by PP, 

(2) the predicted target velocity is denoted by VP, 

(3) the predicted target acceleration is denoted by AP, 

(4) the smoothed target position is denoted by Ps, 

(5) the smoothed target velocity is denoted by Vs, 

(6) the smoothed target acceleration is denoted by As, 

(7) the target observed position is denoted by Po, 

(8) t is the simulation time interval and 

(9) n is the sample number. 

The selection of the weighting coefficient is an important design consideration 

as it directly affects the stability of the output data, error reduction capability and 

other key design parameters. The theory and operation of the three optimal α-β-γ 

filter designs and Kalman filter are explained in the next sub-section. The three 

designs of the α-β-γ filter differ in their selection and subsequent computation 

process of the smoothing coefficients α, β and γ. 
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2.1.1 Benedict-Bordner Model  

This was the first optimal tracking filter to be derived. The relationship fixed 

beta in terms of alpha as shown in Eq. (2.7) (Benedict et al, 1962); 

𝛽 =
𝛼2

2−𝛼
                       (2.7) 

The design of this filter does not specify the optimal position smoothing 

coefficient, α, hence it is chosen based on the system application. It is, however, 

proposed to vary α with observed high frequency power fluctuations of the 

tracking error residual or the innovation, (𝑃𝑜(𝑛) − 𝑃𝑃(𝑛)). 

The Benedict-Bordner model coefficient relationship becomes an optimal third 

order tracking filter when the condition shown in Eq. (2.8) is satisfied according 

to Simpson (1963). 

2𝛽 − 𝛼 (𝛼 + 𝛽 +
𝛾

2
) = 0          (2.8) 

 

2.1.2 Gray-Murray Model  

This filter is an extension of the Kalata filter coefficients relationship which 

employs the tracking index to compute a damping parameter which is 

consequently used to calculate the position smoothing coefficient, α. The tracking 

index is given by the relationship shown in Eq. (2.9) as derived by Kalata (1983). 

 

𝛬 =
𝑡2𝜎𝑤

𝜎𝑣
                (2.9) 

where t, 𝜎𝑤  and 𝜎𝑣  are the target tracking period, maneuverability and 

measurement noise respectively.  
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The damping parameter, r, is computed as shown in Eq. (2.10) and the gain 

parameters α, β, and γ, are obtained explicitly as shown in Eq. (2.11) for position 

smoothing coefficient, Eq. (2.12) for velocity smoothing coefficient and (2.13) 

for the acceleration smoothing coefficient (Gray et al, 1993). 

 

𝑟 =
(4+𝛬)−√8ʌ+𝛬2

4
                    (2.10) 

𝛼 = 1 − 𝑟2                     (2.11) 

𝛽 = 2(2 − 𝛼) − 4√1 − 𝛼                   (2.12) 

𝛾 =
𝛽2

2𝛼
                     (2.13) 

 

2.1.3 The Fading Memory Model  

The fading memory model has three real roots and represents the filter 

minimizing the discounted old data least squares error for a constantly 

accelerating target as discussed by Brookner (1998). The position, velocity and 

acceleration gain coefficients are determined by the damping parameter, ξ, which 

is the discounting factor and whose value was selected through an optimization 

process and found to depend on the initial and average speed of the target under 

consideration as discussed further in Chapter 3. The smoothing coefficients are 

computed as shown in Eq. (2.14) for position smoothing coefficient, Eq. (2.15) 

for velocity smoothing coefficient and (2.16) for the acceleration smoothing 

coefficient. 

 

𝛼 = 1 − 𝜉3                          (2.14) 

𝛽 = 1.5(1 − 𝜉)2(1 + 𝜉)                       (2.15) 
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𝛾 = (1 − 𝜉)3                      (2.16) 

 

2.2 Theory of the Kalman Filter  

In the introduction of the Kalman filter, Kalman (1960) described it as a 

recursive solution to the discrete-data linear filtering problem. A recursive filter 

is one that requires very little data storage as only the incoming data information 

is used and therefore does not store up previous information. In addition, the 

recursive attribute of the Kalman filter ensures that new measurements can be 

processed as they arrive. It is known to be a good optimal linear estimator in the 

sense that if the noise is White Gaussian noise, it minimizes the mean square error 

estimate of the random vector that is the system’s state. However, the filter is 

fundamentally not designed to handle maneuvering targets. 

The basic concept of the Kalman filter comprises the following steps; 

Prediction step; 

Eq. (2.17) is the state prediction equation as it predicts the state of the target at 

time t+1 based on the state at time t. Eq. (2.18) is the predicted state covariance 

matrix of the process noise wt and it depicts the accuracy of predicting the target’s 

state at time t+1 based on the state values obtained at time t. 

 

𝑋𝑡+1 = 𝐹𝑋𝑡 + 𝑤𝑡                                      (2.17) 

𝑃𝑡+1 = 𝐹𝑃𝑡𝐹
𝑇 + 𝑄𝑡        (2.18) 

where; 



- 13 - 

 

𝑋𝑡 =

[
 
 
 
 
 
𝑥
𝑦
𝑥̇
𝑦̇
𝑥̈
𝑦̈]
 
 
 
 
 

  

𝐹 =

[
 
 
 
 
 
 1 0 𝑡 0

𝑡2

2
0

0 1 0 𝑡 0
𝑡2

2

0 0 1 0 𝑡 0
0 0 0 1 0 𝑡
0 0 0 0 1 0
0 0 0 0 0 1]

 
 
 
 
 
 

  

𝑋𝑡  is the state vector containing the position, velocity and acceleration      

parameters, 

F is the state transition matrix, 

wt the process noise with zero mean and standard deviation σ𝑤, 

Q is the covariance matrix of the dynamic model driving noise vector, wt 

t is the sampling period and, 

Pt is the state covariance matrix at time t. 

The target measurement equation is given by Eq. 2.19. 

 

𝑍𝑡 = 𝐻𝑋𝑡 + 𝑣𝑡                    (2.19) 

where; 

Zt is the measurement vector which comprises only the position since in    

this study observation is made on the position vector only. 

vt is the measurement error with zero mean and standard deviation σ𝑣. 

 H is the measurement/ observation matrix given by; 
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𝐻 = [
1 0 0 0 0 0
0 1 0 0 0 0

] 

 

Correction step; 

Eq. (2.20) is the Kalman filtering equation as it computes the updated estimate 

of the current state of the target and Eq. (2.21) is the updated estimate of the state 

covariance matrix. 

 

𝑋̂𝑡 = 𝑋𝑡 + 𝐾𝑡𝑦𝑡                                                                                               (2.20) 

𝑃̂𝑡 = (𝐼 − 𝐾𝑡𝐻)𝑃𝑡                    (2.21) 

where; 

  𝐾𝑡 = 𝑃𝑡𝐻𝑆𝑡
−1; Kalman gain at time t 

   𝑦𝑡 = 𝑍𝑡 − 𝐻𝑋𝑡; Residual at time t 

   𝑆𝑡 = 𝐻𝑃𝑡𝐻
𝑇 + 𝑅𝑡; Residual covariance 

  ^ denotes the estimated state 
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Chapter 3. Simulation 

3.1 Initial Input of Target Dynamics 

The simulation tests were carried out on a warship moving at the initial relative 

speed of 50 m/s as observed from a stationary own ship. A sample signal of 𝑛 =

1, 000 data samples was investigated at sampling interval time of 𝑡 = 3𝑠 which 

corresponds to the time of one aerial rotation of the radar antenna. The target’s 

initial position as observed from the radar range measurements was (573, 1038.4) 

after scan-conversion to produce Cartesian coordinates. Table 3.1 summarizes 

these initial set target states. 

Table 3.1 Summary of the initial input target dynamics 

Position 

 (x, y) 

Relative speed 

(m/s) 

Sampling interval 

(s) 

Sample size 

(n) 

573, 1038.4 50.4 3 1, 000 

  

3.2 Input Motion Model of the Target Dynamics 

The input model employed to generate the target dynamics is as shown in Eq. 

(3.1) for the horizontal motion and Eq. (3.2) for the vertical motion. 

 

𝑋𝑖 = 𝑎[10𝑠𝑖𝑛(1.2𝑤𝑖) + 7 𝑐𝑜𝑠(0.99𝑤𝑖) + 8 𝑠𝑖𝑛(0.7𝑤𝑖) + 6 𝑐𝑜𝑠(2𝑤𝑖) +

               9 𝑠𝑖𝑛(3𝑤𝑖) + 5 𝑐𝑜𝑠( 3𝑤𝑖)] + 10𝑖 ;          (3.1) 

𝑌𝑖 = 𝑏[20 𝑐𝑜𝑠(0.3𝑤𝑖) + 22𝑠𝑖𝑛(2𝑤𝑖)];                  (3.2) 

where; a and b are constants that serve to control the velocity of the input 

motion model.  
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From the set motion model described by Eqs. (3.1) & (3.2), the resulting signal 

was then sampled at intervals of three seconds to obtain the true trajectory of the 

target as shown in Fig. 3.1. 

 

Fig. 3.1 Target’s true trajectory 

3.3 Noise Modelling 

The observed position is the output obtained from the radar measurements and 

therefore includes an error. In this study, the noisy observation was obtained by 

corrupting the true state with zero mean random white Gaussian noise having a 

standard deviation, σ, of 10 m. Figs. 3.2 & 3.3 show the error distribution in the 

observation. 

 

 

 

 

 

 

Fig 3.2 East-West error in the observation 
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Fig. 3.3 North-South error in the observation 

3.4. α-β-γ Filter Weight Selection and Computation 

The selection and computation of the smoothing coefficients was based 

uniquely on the algorithm provided by the various filter design methods described 

in chapter 2. This sub- section explains how the filter weights were computed for 

each α-β-γ filter design model.  

3.4.1 Filter gain coefficients selection using the Benedict-Bordner model 

   Since this design method does not provide an analytical solution for determining 

the position smoothing coefficient 𝛼 , in this study, the position smoothing 

coefficient was determined experimentally through a trial and error method by 

plotting it against the corresponding innovation which is the total residual 

obtained from the difference between the observed position and predicted position 

trajectories as shown in Fig. 3.4. The interval evaluated was selected based on the 

stability constraints provided for by Jury (1964) for the α-β-γ tracking filter. The 

value of the α that best reduced the innovation was found to be 𝛼 = 0.86. Eqs. (2.7) 

& (2.8) were then used to compute the values of the velocity and acceleration 

smoothing coefficients as shown in Table 3.2. 
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Table 3.2 Smoothing coefficients obtained from Benedict-Bordner model 

α β γ 

0.8600 0.6488 4.4409 x 10-16 

 

 

Fig. 3.4 Total residual between observed and predicted positions 

 against corresponding value of position smoothing 

 coefficient, α 

3.4.2 Filter gain coefficients selection using the Gray-Murray model 

The maneuverability and measurement noise variances were determined 

experimentally by an iterative trial and error method by changing the values of 

𝜎𝑤
2  and 𝜎𝑣

2 error variances while simultaneously feeding the measurement data to 

the filter for each error variance. The output was then used to compute cumulative 

positional error which was then plotted against corresponding error variances. The 

purpose of this procedure was to identify the error variance coefficient 

corresponding to the least error. From the Figs. 3.5, 3.6, 3.7 and 3.8, the values of 

the maneuverability and measurement error variance coefficients corresponding 

to the minimum residual error are 10−3  and 1 respectively. Consequently the 

respective standard deviations are estimated to be σw=0.03162 and σv=1. 
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The tracking index was, therefore, computed as Λ=0.2846 and, consequently 

the damping parameter, r=0.6873. The smoothing coefficients are then computed 

using Eqs. (2.11) ~ (2.13) and are obtained as displayed in Table 3.3. 

 

 

 

 

 

 

 

 

Fig. 3.5 Cumulative error difference between observed and                                  

predicted positions against maneuverability error variance 

 

 

 

Fig. 3.6 Cumulative error difference between true and smoothed   

                     positions against maneuverability error variance 
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Fig.3.7 Cumulative error difference between observed and 

                              predicted positions against measurement error variance 

 

 

Fig. 3.8 Cumulative error difference between true and 

                         smoothed positions against measurement error variance 

 

Table 3.3 Smoothing coefficients obtained from Gray-Murray model 

α β γ 

0.5277 0.1956 0.0101 

3.4.3 Filter gain coefficients selection using the fading memory model  

It is known as the fading memory model since the filter weights depend on the 

value of the discounting factor such that a small damping parameter, ξ leads to a 
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short filter memory hence quickly discounting the older data causing little to no 

smoothing. On the contrary, a large ξ results in a longer filter memory causing 

heavy smoothing and a large dynamic lag. From Eqs. (2.13) ~ (2.15), the 

discounting factor, ξ is constrained to lie in the interval [0, 1]. Therefore, when 

ξ=0, then 𝛼  =1 and from Eq. (2.4), the smoothed position and the observed 

position are superposed indicating that the filter has no memory hence no noise 

smoothing occurs. On the other hand, if ξ=1, then 𝛼  =0 hence the predicted 

position and the smoothed position are superposed, a case of infinite memory thus 

heavy noise smoothing. An illustration of this is as shown in Figs. 3.9, 3.10 and 

3.11.  Figs. 3.9 and 3.10 represent cases of under- damping and over- damping 

respectively resulting in the large transient error, insensitivity to target maneuvers 

and filter instability as depicted in the trajectories. Fig. 3.11 represents a balance 

on the design specifications of the previous two figures demonstrating a better 

transient performance and an equally good stability in the output data as can be 

clearly seen in the stable output target trajectories that closely follow the desired 

signal. 

 

Fig. 3.9 True, Observed, Predicted and Smoothed Position, Large                      

Smoothing Coefficient (ξ=0.2) 
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      Fig. 3.10 True, Observed, Predicted and Smoothed Position, Small  

                      Smoothing Coefficient (ξ=0.8) 

 

 

Fig. 3.11 True, Observed, Predicted and Smoothed Position, Optimal  

                        Smoothing Coefficient (ξ=0.64) 
 

3.4.3.1 Fading memory model optimization 

This design method relates the smoothing coefficients α, β and γ with a 

discounting factor, ξ consequently making the filter weights values dependent on 

the value of ξ. Therefore, in order to obtain the optimal smoothing coefficients, 

the ξ is adjusted experimentally through trial and error until the best value that 
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investigated in this study, that is, optimization by target’s position and 

optimization by target’s velocity and acceleration.  

3.4.3.1.1 Optimization by position 

This method involves comparing the true position, obtained from plotting Eqs. 

(3.1) and Eqs. (3.2), with the predicted position and smoothed position, and 

computing the RTP (residual between the True and Predicted Position) and RTS 

(residual between the True and Smoothed Position) then plotting the total 

positional error against a range of the discounting factor, 𝜉. The value of 𝜉 

corresponding to the least residual error is considered the optimal 𝜉 and hence 

results in the optimal smoothing coefficients.  

Fig. 3.12 shows the positional trajectories depicting the true, observed, 

predicted and smoothed positions tracks. The curve enclosed in the rectangle is 

enlarged for clear viewing as shown in Fig. 3.13 and lies in the interval [2700, 

3700] in the x- axis coordinate. Fig. 3.14 and 3.15 are the residual errors obtained 

from the difference between the true and predicted, and true and smoothed 

positions respectively corresponding to Fig. 3.12. In this case the damping 

parameter, 𝜉 was selected arbitrarily as 0.5 for illustration purpose of the 

optimization procedure. 

 

Fig. 3.12 Target’s True, Observed, Predicted and Smoothed Position (𝜉=0.5) 
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   Fig. 3.13 Enlarged View of target’s True, Observed, Predicted and  

                 Smoothed Position (𝜉=0.5) corresponding to Fig. 3.12 

 

 

Fig. 3.14 Difference between the true and predicted positions 

                               corresponding to Fig. 3.12 
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Fig. 3.15 Difference between the true and smoothed positions  

 corresponding to Fig. 3.12 

Optimization criteria of the filter was based on reduction of residual error to a 

minimum. In this case, residual error is the distance between two measurements 

at the same point in time. For example the residual error T-P indicates the distance 

between the true position and predicted position at time t. Fig. 3.14 shows the 

residual error T-P obtained for ξ=0.5, and the summation of residual error is the 

total error obtained from the whole sample frame over the given tracking duration. 

To determine the optimal discounting factor, ξ is set to lie in the interval 0 to 0.8 

with a step size of 0.01. It was found that values of ξ exceeding 0.8 resulted in a 

sharp increase of the residual error. This can be attributed to over- damping 

resulting in large dynamic lag. Fig. 3.16 shows the summation of residual error 

T-P corresponding to varying values of the discounting factor, ξ. 
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Fig. 3.16 summation of residual error T-P for varying ksi 

The variations along the trajectory on Fig. 3.16 are as a result of addition of 

noise to the observation. In order to obtain a smooth curve the simulation is 

carried out thirty times. Fig. 3.17 shows the superposed curves of thirty simulation 

runs for the summation of residual error T-P. From this, the value of average error 

summation for each ξ can be computed and consequently Fig. 3.18 is obtained. It 

can be clearly seen that when ξ=0.62, the summation of residual error has a 

minimum point which implies that 0.62 is the optimal ξ determined by the method 

of evaluation by summation of residual error of true and predicted position. 
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Similarly, when evaluation is done using the summation of residual error T-S 

(true and Smoothed position), the optimal discounting factor is obtained as shown 

in Fig. 3.19. The results show that the optimal discounting factor is, ξ=0.64. 

 

Fig. 3.17 Summation of the error difference between true and  

                                  predicted positions for varying values of ξ after thirty     

                             simulation runs 

 

 

Fig. 3.18 Summation of the error difference between true and predicted  

  positions for average values of summation for each ξ        

   corresponding to Fig. 3.16 
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Fig. 3.19 Summation of the error difference between true and          

                Smoothed Positions for average values of ξ after 30       

                 Simulation runs 

3.4.3.1.2 Optimization by velocity and acceleration 

The smoothed velocity and acceleration are obtained after filtering as shown 

in Eqs. (2.5) & (2.6) in chapter 2. The first and second derivatives were obtained 

from Eqs. (3.1) & (3.2) resulting in the true (desired) target’s velocity and 

acceleration as shown in Eqs. (3.3) & (3.4) respectively. Since the closer to the 

true state variables the smoothed variables are the better the performance, this 

method employs the residual error of true and smoothed velocity, and the residual 

error of true and smoothed acceleration to determine the optimal ξ. 

 

𝑑𝑋𝑖

𝑑𝑡
= 𝑎[12𝑤𝑐𝑜𝑠(1.2𝑤𝑖) − 6.93𝑤𝑠𝑖𝑛(0.99𝑤𝑖) + 5.6𝑤 𝑐𝑜𝑠(0.7𝑤𝑖) −

            12𝑤𝑠𝑖𝑛(2𝑤𝑖) + 27𝑤 − 15𝑤𝑠𝑖𝑛(3𝑤𝑖)] + 10   

𝑑𝑌𝑖

𝑑𝑡
= 𝑏[−6𝑤𝑠𝑖𝑛(0.3𝑤𝑖) + 44𝑤𝑐𝑜𝑠(2𝑤𝑖)]     

𝑑2𝑋𝑖

𝑑𝑡2 = 𝑎[−14.4𝑤2𝑠𝑖𝑛(1.2𝑤𝑖) − 6.8607𝑤2𝑐𝑜𝑠(0.99𝑤𝑖) −

             3.92𝑤2 𝑠𝑖𝑛(0.7𝑤𝑖)  −   24𝑤2𝑐𝑜𝑠(2𝑤𝑖) − 81𝑤2 𝑠𝑖𝑛(3𝑤𝑖) −
             45𝑤2𝑐𝑜𝑠(3𝑤𝑖)]       

𝑑2𝑌𝑖

𝑑𝑡2 = 𝑏[−1.8𝑤2𝑐𝑜𝑠(0.3𝑤𝑖) − 88𝑤𝑠𝑖𝑛(2𝑤𝑖)]           

(3.4) 

(3.3) 
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After running thirty simulations and calculating the average summation of 

residual error corresponding to each ξ, Fig. 3.19 and Fig. 3.20 were obtained. The 

minimum point on the curve indicates that optimal ξ is 0.56 on evaluation using 

residual resulting from true and smoothed velocity difference. On the other hand, 

on evaluation by the residual obtained from difference between the true 

acceleration and smoothed acceleration, the optimal ξ is 0.62 as indicated in Fig. 

3.20. 

 

Fig. 3.20 Average cumulative error between true and  

     smoothed velocity for each value of ξ after 

    thirty simulation runs 

 

 

Fig. 3.21 Average cumulative error between true and smoothed  

        acceleration for each value of ξ after thirty simulation runs 
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From the above analysis, the initial velocity and the average velocity is a 

constant value, and the optimal ξ is close to 0.6. From the position Eqs. (3.1) & 

(3.2), if the constants a, b are varied, the initial velocity and average velocity also 

changes. 

Table 3.4 shows the optimal discounting factor obtained for various initial and 

average target velocities. The quantities a, b serve to control the numerical size of 

the initial and average target velocity. The results indicate that different relative 

speeds result in different optimal filtering coefficients. A target model moving at 

very high initial relative speed requires a low value of the optimal damping 

parameter compared to a slower target. 

Table 3.4 Optimal ξ for various initial velocities 

A b 

Initial 

velocity 

(m/s) 

Average 

velocity 

(m/s) 

OKRTPP OKRTSP OKRTSV OKRTSA 

3 5 12.9 10.34 0.77 0.78 0.75 0.78 

15 30 31.30 19.24 0.65 0.68 0.62 0.67 

30 50 50.36 30.33 0.60 0.64 0.56 0.62 

60 90 88.43 54.02 0.53 0.57 0.49 0.55 

70 120 111.40 69.28 0.52 0.55 0.45 0.53 

90 160 145.40 91.20 0.50 0.54 0.43 0.51 

 

where; 

OKRTPP: Optimal ξ evaluated by summation of the residual computed from 

the difference between the true position and predicted position; 

OKRTSP: Optimal ξ obtained from summation of the residual resulting from 

difference between the true position and smoothed position; 

OKRTSV: Optimal ξ evaluated by summation of the residual error between 

the true velocity and smoothed velocity and, 
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OKRTSA: Optimal ξ evaluated by summation of the residual error between 

the true acceleration and smoothed acceleration. 

Table 3.5 shows a summary of the smoothing constants as obtained from the 

fading memory design method as computed using Eqs. (2.14)~ (2.16) as discussed 

in section 2. 

Table 3.5 Smoothing coefficients obtained from fading memory model 

α β γ 

0.5277 0.1956 0.0101 

 

3.5 Kalman Filter Tuning 

Tuning the Kalman filter involves a careful process of estimation of the process 

noise covariance and the measurement noise covariance which in turn increases 

the sensitivity of the filter which produces near optimal estimates of the required 

target dynamics. Since the effects of both R and Q are negatively correlated, 

owing to the fact that they occur in the measurement and state equation 

respectively, the matrices need to be carefully selected and tuned to avoid 

divergence of the filter estimates rendering them useless. In addition, given that 

the R and Q matrix in this study are a fixed value throughout the filtering process, 

the initial choice of both covariance matrices is crucial in ensuring a good and 

stable performance of the filter.  

3.5.2 Q Covariance Matrix Tuning 

The matrix Q in the Kalman filter reflects the uncertainty in the target’s 

trajectory during maneuvers and therefore it is the process or dynamic noise w 

covariance matrix with a variance, σ𝑤
2 . The tuning process in this study was 

achieved based on a procedure paralleling that employed in the Gray-Murray 
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model for determination of the measurement and maneuverability error variance. 

It involved changing the covariance matrices alternately. For instance, in order to 

obtain the Q covariance matrix, the measurement noise covariance matrix R, was 

held constant as measurement data was simultaneously fed to the filter while 

constantly changing the Q matrix coefficient for each simulation run. The output 

was then used to compute cumulative positional error which was then plotted 

against corresponding Q covariance matrix coefficients. The Q covariance matrix 

coefficient corresponding to the least error was then obtained. From the Figs. 3.22 

and 3.23, the value of Q covariance matrix coefficient corresponding to the 

minimum residual error is 10-3. The process noise covariance matrix Q obtained 

from this process is as represented by the Eq. (3.5). 

 

𝑄 = 10−3

[
 
 
 
 
 
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1]

 
 
 
 
 

      (3.5) 
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Fig. 3.22 Cumulative error difference 

between observed and predicted 

positions against Q matrix coefficient 

 

Fig. 3.23 Cumulative error difference 

between true and smoothed positions 

against Q matrix coefficient  
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3.5.2 R Covariance Matrix Tuning 

The R matrix shows the accuracy of the radar measurement. Hence, it is the 

covariance matrix of the measurement error v, with a variance of 𝜎𝑣
2.  The tuning 

process of the R covariance matrix is similar to the one described in sub- section 

3.5.1 for determination of the maneuverability error covariance matrix coefficient. 

Hence, to determine the R covariance matrix, the Q covariance matrix was held 

constant while feeding the measurement data to the filter simultaneously as the 

measurement noise covariance matrix is altered with every simulation run. The 

output was then used to compute cumulative positional error which was then 

plotted against corresponding measurement noise covariance matrix coefficients. 

The covariance matrix coefficient corresponding to the least error was then 

obtained as the value of the optimal measurement noise covariance coefficient. 

From the Figs. 3.24 and 3.25, the value of R covariance matrix coefficient 

corresponding to the minimum residual error is 1 and is represented by the matrix 

shown in Eq. (3.6). 

𝑅 = [
1 0
0 1

]      (3.6) 
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Fig. 3.24 Cumulative error difference 

between observed and predicted 

positions against R matrix coefficient 

 

Fig. 3.25 Cumulative error difference 

between true and smoothed positions 

against R matrix coefficient 
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3.6 Results Analysis and Discussion 

In this study, the comparison of the filters was based on three performance 

indices, that is, tracking and estimation error reduction, sensitivity of the filter to 

target maneuvers and output data stability, and variance reduction ratio (VRR).  

Filter’s capability to minimize the tracking and estimation noise levels was 

achieved by comparing the size of the error in the estimated and predicted 

positions that is, estimation and prediction error determination respectively as a 

measure of the error reduction capability of the filter.  Estimation error is obtained 

by computing the deviation of the estimated data from the true position for each 

sample. Similarly, prediction error indicates how far the predicted position 

deviates from the true position hence it is the tracking error. Sensitivity of the 

filter to target maneuvers and data stability was indicated by the filter’s ability to 

follow the target steadily and without divergence of the data samples which could 

lead to loss of target and was determined by observation of the state of stability 

and steadiness of the trajectories obtained using the different filtering design 

methods considered in this study. Of importance was to observe how closely the 

filter follows the true target trajectory which is the desired output. And finally, 

the variance reduction ratio was evaluated using the Eqs. (1.1) ~ (1.3) which 

indicates the measurement noise reduction for position, velocity and acceleration. 

3.6.2 α-β-γ Filter Results and Remarks 

Figs. 3.26, 3.27 & 3.28 show the true, observed, predicted and smoothed 

positions trajectories obtained from the tracking problem using the various α-β-γ 

filter models under consideration in this study. The figures represent the positional 

trajectories for the Benedict-Bordner filter, Gray-Murray model, the fading 

memory filter model respectively. Of the three models under investigation, the 

Gray-Murray model appears to follow the target quite well with high sensitivity 

to changes in target maneuvers as indicated by the stability and steadiness of the 
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trajectories as the target transitions from one point to the next. In addition, the 

output trajectories that is, the predicted and smoothed position trajectories can be 

observed to transition very smoothly and closely to the true trajectory for the 

entire duration of the tracking period. The fading memory model performs nearly 

as well as the Gray-Murray model except for a few fluctuations of data samples 

at several points along the target’s curves which indicate a reduced sensitivity at 

these points on the targets’ trajectories as the target maneuvers. As for the 

Benedict-Bordner model, shown in Fig. 3.26, the filter performs worst, based on 

sensitivity to target maneuvers and data stability, compared to the other two α-β-

γ filters as indicated by the visibly clear jerky motion at the beginning of the 

tracking process. However, as tracking continues the trajectories stabilize and the 

tracking accuracy can be seen to also increase.  

 

Fig. 3.26 Target’s True, Observed, Predicted and Smoothed  

        Position, Benedict-Bordner model 
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Fig. 3.27 Target’s True, Observed, Predicted and Smoothed Position, 

                     Gray-Murray model 

 

 

Fig. 3.28 Target’s True, Observed, Predicted and Smoothed Position  

 fading memory model, (𝜉=0.64) 

 

Figs. 3.29, 3.30 & 3.31 show the total prediction (tracking) errors resulting 

from Benedict-Bordner model, the Gray-Murray model and the fading memory   

filter model respectively.  Figs. 3.32, 3.33 & 3.34 are the total estimation errors 

obtained from the Benedict-Bordner model, the Gray-Murray model and the 

fading memory filter model respectively.  
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These results show that the fading memory model has the highest accuracy in 

both tracking and estimation of the position of the target warship among the other 

α-β-γ filters as can be seen from the small error values obtained, followed by the 

Gray-Murray filter model. The Benedict-Bordner filter performs the worst in 

terms of tracking and estimation noise reduction for both prediction and 

estimation as indicated by the resulting big errors values. This can be explained 

by the fact that the design of this filter is based on the requirement for satisfying 

a good transient response. And since performance of a filter is a tradeoff between 

a good transient response and noise reduction, the filter then performs badly when 

applied to meet the requirement for tracking error reduction. 

  

 

 

  

 

 

 

 

Fig. 3.29 Total prediction error, Benedict- Bordner model,  

                                   error= 26, 326 m 
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Fig. 3.30 Total prediction error, Gray-Murray model,  

 error= 21071 m 

 

 

 

 

 

 

 

 

Fig. 3.31 Total prediction error, fading memory m𝑜𝑑𝑒𝑙,  
                                   error= 19, 622 m 
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Fig. 3.32 Total estimation error, Benedict-Bordner model,  

error= 11, 677m 

 

 

 

 

 

 

 

   

 

 

Fig. 3.33 Total estimation error, Gray-Murray model, 

                 error= 11, 693 m 
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Fig. 3.34 Cumulative estimation error, fading memory model,  

            error =10653 m 

Using Eqs. (1.1) ~ (1.3) and the smoothing coefficients values as obtained from 

different filter models, the variance reduction ratios (VRRs) for each of the α-β-γ 

filter model investigated were computed and recorded as displayed on Table 3.6. 

From the results, the Gray-Murray model out-performs the other two filters as 

indicated by the small values obtained for both position and velocity variance 

reduction ratios in reducing the measurement noise.  This is followed by the 

fading memory model and finally the Benedict-Bordner model. In this study, the 

acceleration variance reduction is of little consequence as the filter design is 

essentially for tracking nearly constant acceleration. Thus, the acceleration of the 

target does not affect the system dynamics much and hence the reason for the 

extremely small values of VRR resulting from the determination of the 

acceleration variance reduction ratios.  

Table 3.6 Variance Reduction Ratios 

Filter type 
Position 

VRR 

Velocity 

VRR 

Acceleration 

VRR 

Gray-Murray 0.4743 0.0061 1.8711 x 10-06 

Fading memory model 0.7172 0.0142 3.7829 x 10-05 

Benedict-Bordner 0.7862 0.0667 3.4712 x 10-33 
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3.6.2 Kalman Filter Results and Remarks 

With regard to sensitivity to target maneuvers and data stability, the Kalman 

filter was defined by prediction and estimation trajectories marred with erratic 

changes and fluctuations at various points on the trajectories, indicating data 

instability, throughout the tracking duration an indication of the filter’s inability 

to respond efficiently to maneuvers particularly for this type of target motion 

dynamics. The results are as shown in Fig. 3.35. 

Based on tracking and estimation error reduction, the results of the Kalman 

filter are as shown in Figs 3.36 & 3.37. The filter outperforms all the other three 

filters discussed in sub- section 2 above as it possesses the best accuracy as 

indicated by the small values of both the tracking and estimation errors obtained. 

These results indicate that the Kalman filter is an efficient estimator, but not 

suitable for following a highly maneuvering target. 

 

Fig. 3.35 Target’s True, Observed, Predicted and smoothed Position,  

                       Kalman Filter 
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Fig.3.36 Total prediction error, Kalman filter, error=19,104 m 

 

 

Fig. 3.37 Total estimation error, Kalman filter, Error=10,492 m 

3.6.3 Kalman Filter vs. α-β-γ Filter  

Overall, on the basis of sensitivity to target maneuvers and data stability, the 

α-β-γ filters out-performed the Kalman filter which was clearly defined by over 

shootings and fluctuations at various points on the output trajectories. This can be 

explained by the fact that the Kalman filter is not designed to handle maneuvering 

targets hence the unsteady output trajectories. It however minimizes the tracking 
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and estimation error better compared to α-β-γ filters as depicted by the small error 

values obtained. Nevertheless, the difference in error between the Kalman filter 

and the fading memory model is only slight as shown in Table 3.7 which provides 

a brief summary of a quick overview of the numerical values of the errors placed 

side by side for easier comparison at a glance. 

Table 3.7 Summary of the tracking and estimation accuracy 

Filter type 
Tracking error 

(m) 

Estimation 

error (m) 

α
-β

-γ
 f

il
te

r 

Benedict-

Bordner model 
26, 326 11, 677 

Gray-Murray 

model 
21,071 11,693 

Fading 

Memory model 
19, 622 10, 653 

Kalman filter 19,104 10,492 
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Chapter 4 Conclusion and Future Prospects 

In any research invested in the study and analysis of tracking filters, the most 

crucial objective is to attain a filter that meets the requirements for a particular 

application. Therefore, in selecting a particular filter the performance analysis 

comes in handy in order to select the best filter design that satisfies the design 

specifications.  

In this study, four tracking filters, that is the Kalman filter, Benedict-Bordner 

constant acceleration filter model, Gray-Murray model and the fading memory α-

β-γ filter model have been investigated for comparison based on their 

performance. The performance criteria involves determination of the filter’s 

ability to reduce tracking and estimation noise, sensitivity to changes in target’s 

tracks and data stability while tracking a highly maneuvering target with a random 

white gaussian error input, and determination of variance reduction ratio for each 

α-β-γ filter. The filters’ capability to reduce tracking and estimation noise was a 

function of the residual error in the prediction and estimation data, and was 

computed by determining the deviation from the true trajectory of the predicted 

and smoothed trajectories respectively. Sensitivity to target maneuvers and data 

stability was determined through observation of the steadiness and stability of the 

target trajectories while, the variance reduction ratios were determined from 

analytically derived equations. Simulation tests were carried out under similar 

initial conditions of set target’s input motion model on each filter.  

Prior to performance comparison, the Fading memory model was optimized 

based on total residual error reduction achieved by adjusting the discounting 

factor in order to obtain the ξ that reduced the residual error the most. 

Optimization results showed that the optimal ξ is dependent on the speed of the 

target under consideration. In other words, different targets undergoing disparate 
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motion dynamics would have varying optimal gain parameters. For the target 

motion dynamics tested in this study, the optimal ξ was found to be equivalent to 

0.62. This value was then used in computing the gains of the filter. 

Simulation results demonstarated that based on the ability to follow the 

maneuvering target with sensitivity and data stability, the Benedict-Bordner 

model depicted an unstable motion marred with fluctuations and overshooting 

tendencies along the output trajectories at the beginning of the tracking duration. 

As plotting progressed, however, the trajectories seemed to stabilize and a closer 

look even showed increased accuracy. The Kalman filter was also characterized 

by variations along its trajectories implying its insensitivity in following this type 

of target motion as the fluctuations were spread across the entire lengths of the 

output trajectories which consequently indicated data instability. The Gray-

Murray model, on the other hand, depicted quite a high order of sensitivity to 

target maneuvers and data stability which was visible from the obtained smooth 

curves of the output position trajectories indicating a higher efficiency in 

following the highly maneuvering target than the fading memory model which 

had a few variations at different points of the trajectories. 

In terms of tracking and estimation noise reduction, the Kalman filter had a 

higher accuracy in both prediction and estimation of the target’s position as 

compared to the optimal α-β-γ filters as demonstrated by the small error values 

obtained using the Kalman filter. The Benedict-Bordner model showed the worst 

ability to reduce noise as can be seen from the large deviations from the true 

trajectory obtained in the tracker for both prediction and estimation states. This is 

perhaps due to the fact that this filter is designed to essentially accentuate the 

transient response and, since performance of a filter is a tradeoff between a good 

transient response and error reduction, the filter then performs badly as tracking 

error minimizer. The fading memory model out-performed the other two α-β-γ 
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filters in this respect of tracking and estimation error reduction followed by the 

Gray-Murray model. 

The results obtained from computation of the variance reduction ratio indicated 

that the Gray-Murray model out-performed the other two α-β-γ filters as it had 

the smallest values followed by the fading memory model. The variance reduction 

was a measure of the measurement noise reduction. It was also noted that the 

acceleration of the target had no effect on the system dynamics, hence the reason 

for the extremely small values of VRR resulting from the determination of the 

acceleration variance reduction ratios.  

Overall, the critically damped filter not only depicted its efficiency in 

following the highly maneuvering target and possessing a good tracking noise 

reduction capability, but also its design simplicity and low computational load 

made it easy to implement. 

Future study will involve tracking the high dynamic target warship while own 

ship is also on motion. In addition, a further improvement of the critically damped 

filter would be to use the jerky model filter in order to enhance the sensitivity to 

changes in tracks by the target during maneuvers and especially at points of 

sudden changes in speed and course along the target trajectory. 
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